AAAI-22

Motivation

Motivated by the importance of dimensionality-reduction algorithm for dealing with high dim. datas and fairness, we propose a new definition/formulation of fair PCA.

Problem Setting: Fair PCA

- Data matrix: $X \in \mathbb{R}^{n \times p}$, its covariance matrix: $\Sigma \in \mathbb{R}^{p \times p}$,
- Projection(loading) matrix: $V \in \mathbb{R}^{p \times d}$ s.t. $d<p, V^{T} V=I_{d}$ Projected data distributions of protected classes: Q_{0}, Q_{1} (Q_{0}, Q_{1} are dependent on V)

Two goals:

1. Reconstruction: Maximize the explained variance (exp. var.) after projection(\%): $100 * \frac{\operatorname{tr}\left(V^{T} \Sigma V\right)}{\operatorname{tr}(\Sigma)}$
2. Fairness: Minimize the discrepancy between the projected data distributions of two protected classes

Problems with prev. approach

Previous approach [1] proposed an adversarial definition of fair PCA and an SDP algorithm. This has several problems:

1. The estimator for fairness metric is neither tractable nor asymptotically consistent.
2. Exact distribution similarity (fairness) cannot be achieved as only the first two moments are considered.
3. The SDP is w.r.t. a $p \times p$ matrix variable P i.e. it is inscalable to high dimensions.
4. Relaxation was required, resulting in the outputted loading matrix to be always suboptimal w.r.t. exp. var.

New Definition of Fair PCA

Use MMD as our measure of discrepancy between the projected data distributions of protected classes!

1. MMD estimator is both tractable and consistent [2].
2. MMD is a metric ${ }^{\text {a }}$ for the space of probability measures.

This is when the kernel used for MMD is characteristic (Fukumizu et al., 2008). RBF kernel is one example.

New Formulation of Fair PCA

MbF-PCA: Fair PCA as a constrained Riemannian optimization

 over the Stiefel manifold $\operatorname{St}(\boldsymbol{p}, \mathrm{d})$.- St $(\boldsymbol{p}, \boldsymbol{d})$: set of $V \in \mathbb{R}^{p \times d}$ with $V^{T} V=I_{d}$.
- Constraint: MMD of projected distributions $=0$

$$
\begin{array}{ll}
\underset{V \in S t(p, d)}{\operatorname{minimize}} & f(V):=-\left\langle\Sigma, V V^{\top}\right\rangle \\
\text { subject to } & h(V):=\operatorname{MMD}^{2}\left(Q_{0}, Q_{1}\right)=0 .
\end{array}
$$

3. This optimization is w.r.t. $p \times d$ matrix variable V, and the manifold is utilized i.e. it becomes scalable to high dimensions.
4. The resulting optimization is exact i.e. no relaxation.

Solving MbF-PCA

To solve MbF-PCA, we use REPMS[3], a Riemannian counterpart for exact penalty method. (See [4] for the pseudocode)

Under reasonable assumptions, we prove the following novel optimality guarantees for REPMS:

1. Under ideal hyperparam. setting, any fair limit point is a local minimum
2. Moreover, practical hyperparm. setting approximates 1.

Compared to the analysis provided in [3], above is

- more realistic analysis (by considering hyperparameters)
- stronger optimality results (since we have local minimality)

Experiments

1. Synthetic dataset

- MbF-PCA outperforms in terms of exp. var., under similar level of fairness
- MbF-PCA is much more scalable to high dimensions

2. UCI dataset - Adult Income

- \%Var: var. exp., \%Acc: downstream task accuracy, $\Delta_{D P}$: downstream task fairness ${ }^{\text {a }}$ (demographic parity; DP)
- Reducing the dimension from 97 to 10

Algorithm (hyperparameterb)	\%Var	\%Acc	MMD $^{\mathbf{2}}$	$\boldsymbol{\Delta}_{\boldsymbol{D} \boldsymbol{P}}$
PCA	21.77	93.64	0.195	0.16
FPCA (0.1, 0.01)	15.75	91.94	0.006	0.13
FPCA (0, 0.01)	15.52	91.66	0.004	0.13
MbF-PCA $\left(10^{-3}\right)$	18.71	92.81	0.005	0.14
MbF-PCA $\left(10^{-6}\right)$	15.49	86.36	0.003	0.07

- MbF-PCA outperforms in all criteria
- MbF-PCA displays better trade-off
aThe framework can be extended to other fairness such as equalized odds bLower hyperparameter implies tighter fairness constraint for the algorithm

References

[1] Olfat, M.; and Aswani, A. 2019. Convex Formulations for Fair Principal Component Analysis. In AAAI
[2] Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Scholkopf, B.; and Smola, A. 2012. A Kernel Two-Sample Test. In JMLR
[3] Liu, C.; and Boumal, N. Simple Algorithms for Optimization on Riemannian Manifolds with Constraints. 2019. In Appl Math Optim
[4] https://arxiv.org/pdf/2109.11196.pdf

