

AIM Lab.

Electrical & Computer Engineering GRAINGER COLLEGE OF ENGINEERING

Motivated by the importance of dimensionality-reduction algorithm for dealing with high dim. datas and fairness, we propose a new definition/formulation of fair PCA.

Problem Setting: Fair PCA

- Data matrix: $X \in \mathbb{R}^{n \times p}$, its covariance matrix: $\Sigma \in \mathbb{R}^{p \times p}$,
- Projection(loading) matrix: $V \in \mathbb{R}^{p \times d}$ s.t. $d < p, V^T V = I_d$
- Projected data distributions of protected classes: Q_0, Q_1 $(Q_0, Q_1 \text{ are dependent on } V)$

Two goals:

- **1.** *Reconstruction:* Maximize the explained variance (exp.
 - var.) after projection(%): $100 * \frac{tr(V^T \Sigma V)}{tr(\Sigma)}$
- **2.** *Fairness:* Minimize the discrepancy between the projected data distributions of two protected classes

Problems with prev. approach

Previous approach [1] proposed an *adversarial* definition of fair PCA and an SDP algorithm. This has several problems:

- The estimator for fairness metric is **neither tractable nor** asymptotically consistent.
- Exact distribution similarity (fairness) cannot be achieved as only the first two moments are considered.
- 3. The SDP is w.r.t. a $p \times p$ matrix variable P i.e. it is inscalable to high dimensions.
- Relaxation was required, resulting in the outputted 4 loading matrix to be **always suboptimal w.r.t. exp. var.**

Fast and Efficient MMD-based Fair PCA via Optimization over Stiefel Manifold

Junghyun Lee¹, Gwangsu Kim², Matt Olfat^{3,4}, Mark Hasegawa-Johnson⁵, Chang Dong Yoo²

¹GSAI, KAIST ²School of EE, KAIST ³IEOR, UC Berkeley ⁴Citadel ⁵Dept. of ECE, UIUC

See [4] for the full version of our paper. Also, checkout our Github: https://github.com/nick-jhlee/fair-manifold-pca

New Definition of Fair PCA

Use **MMD** as our measure of discrepancy between the projected data distributions of protected classes!

- MMD estimator is both *tractable and consistent* [2].
- MMD is a *metric*^a for the space of probability measures.

^aThis is when the kernel used for MMD is *characteristic* (Fukumizu et al., 2008). RBF kernel is one example.

New Formulation of Fair PCA

MbF-PCA: Fair PCA as a *constrained Riemannian optimization* over the Stiefel manifold St(p, d). - St(p, d): set of $V \in \mathbb{R}^{p \times d}$ with $V^T V = I_d$.

- **Constraint:** MMD of projected distributions = 0

 $\underset{V \in St(p,d)}{\text{minimize}} \quad f(V) := -\langle \Sigma, VV^{\mathsf{T}} \rangle$

subject to $h(V) := MMD^2(Q_0, Q_1) = 0.$

This optimization is w.r.t. $p \times d$ matrix variable V, and the manifold is utilized i.e. it becomes *scalable to high* dimensions.

The resulting *optimization is exact* i.e. no relaxation.

Solving MbF-PCA

To solve MbF-PCA, we use REPMS[3], a Riemannian counterpart *for exact penalty method*. (See [4] for the pseudocode)

Under reasonable assumptions, we prove the following *novel* optimality guarantees for REPMS:

- Under *ideal hyperparam. setting*, any <u>fair</u> limit point is a local minimum.
- Moreover, practical hyperparm. setting approximates 1.

Compared to the analysis provided in [3], above is *more realistic* analysis (by considering hyperparameters) stronger optimality results (since we have local minimality)

MbF-PCA outperforms in terms of exp. var., under

MbF-PCA is much more scalable to high dimensions

%Var: var. exp., %Acc: downstream task accuracy, Δ_{DP} : downstream task fairness^a (demographic parity; DP) Reducing the dimension from 97 to 10

%Var	%Acc	MMD ²	Δ_{DP}
21.77	93.64	0.195	0.16
15.75	91.94	0.006	0.13
15.52	91.66	0.004	0.13
18.71	92.81	0.005	0.14
15.49	86.36	0.003	0.07

MbF-PCA outperforms in all criteria MbF-PCA displays better trade-off

^aThe framework can be extended to other fairness such as equalized odds ^bLower hyperparameter implies tighter fairness constraint for the algorithm

[1] Olfat, M.; and Aswani, A. 2019. Convex Formulations for Fair Principal

[2] Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Scholkopf, B.; and Smola, A. [3] Liu, C.; and Boumal, N. Simple Algorithms for Optimization on Riemannian Manifolds with Constraints. 2019. In Appl Math Optim [4] <u>https://arxiv.org/pdf/2109.11196.pdf</u>