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Fair Machine Learning

An active area of research with enormous societal impact
I cf. Machine Bias [Angwin et al., 2016] - Black vs White Defendant’s

recidivism scores

Machine learning algorithms should not be dependent on specific
(sensitive) variables such as gender, age, race...etc.

White Black

Higher risk, yet didn’t re-offend 23.5% 44.9%
Lower risk, yet did re-offend 47.7% 28.0%
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Fair Machine Learning

There are multiple frameworks on how to do this:
I Fair supervised learning
I Fair unsupervised learning
I Fair representation learning

[Zemel et al., 2013, Cisse and Koyejo, 2019]
I Fair data preprocessing
I ...etc.

Some useful resources:
I https://fairmlbook.org/pdf/fairmlbook.pdf
I https://dl.acm.org/doi/pdf/10.1145/3457607

Mathematically speaking, (in my humble opinion), many of the al-
gorithmic fair ML problems can be formulated as (constrained) opti-
mizations! (i.e. optimizationists(?)’ roles are very important)
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Problem Setting

{xi}ni=1 ⊂ Rp: original given data points (as row vectors)
I X ∈ Rn×p: data matrix
I Σ: empirical covariance matrix

X is composed of two groups, which correspond to the protected
classes (e.g. gender, age)

d < p: dimension to which we want to reduce to

V ∈ Rp×d : linear projection matrix (in case of PCA, V ᵀV = Id)

Main objectives:

Maximize 〈Σ,VV ᵀ〉: explained variance of X after applying
(linear) PCA using V .

Minimize fairness: to be defined/discussed
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Problem setting

Fair PCA: the problem of maximizing the explained variance while
imposing distribution similarity after projection!

(a) Original data (b) Vanilla PCA (c) Fair PCA
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Adversarial Definition: FPCA

To the best of our knowledge, [Olfat and Aswani, 2019] is the only
prior work that considered this notion of fair PCA, in which they
proposed the following adversarial definition, referred to as FPCA:

Definition (∆A-fairness, [Olfat and Aswani, 2019] (Informal))

The dimensionality reduction Π : Rp → Rd is ∆A(h)-fair if adversarial
classifiers that try to classify the protected class perform poorly in the
projected space; the fairness metric is defined in terms of the difference
between true positive and false positive.

Figure: When vanilla PCA is applied to (a), an unfair dimensionality-reduced
representation (b) is obtained. By constraining the PCA with appropriate fairness
constraints, we obtain a fair representation (d). (From [Olfat and Aswani, 2019])
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SDP formulation of FPCA

[Olfat and Aswani, 2019] provided an SDP formulation of fair PCA1:

Figure: δ: bound for mean difference, µ: bound for covariance difference

1This was heavily inspired from the SDP formulation of vanilla PCA
[Arora et al., 2013].
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Problems with the Definition of FPCA

∆̂A(F) cannot be computed exactly nor efficiently.

∆̂A(Fc) := sup
h∈Fc

sup
t

∣∣∣∣∣ 1

|P|
∑
i∈P

Ii (Π, ht)−
1

|N|
∑
i∈N

Ii (Π, ht)

∣∣∣∣∣

∆̂A(F) may be asymptotically inconsistent.

Proposition ([Olfat and Aswani, 2019])

Consider a fixed family of classifiers Fc . Then for any δ > 0, with

probability at least 1− exp
(
− (n+m)δ2

2

)
the following holds:

∣∣∣∆A(Fc)− ∆̂A(Fc)
∣∣∣ ≤ 8

√
VC (Fc)

m + n
+ δ.
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Problems with the SDP Formulation of FPCA

The SDP is inscalable to high dimensional input data.

The resulting solution is suboptimal due to the SDP relaxations

Instead of dealing with V directly, [Olfat and Aswani, 2019] optimize
w.r.t. P = VV ᵀ ∈ Rp×p

The orthogonality constraint V ᵀV = Id becomes rank(P) ≤ d , which
was then relaxed2 to tr(P) ≤ d .

As the fairness constraints were derived under Gaussian assumption,
they do not ensure an exact distribution equality.

Their SDP assumes that the underlying datas are Gaussian.
I Two projected sensitive groups have different distributions, yet have the

same first and second moments.

2This is exact when there’s no additional constraints [Olfat and Aswani, 2019]
Junghyun Lee (KAIST AI) MMD-based Fair PCA via Manifold Optim. KSC 2022 - Top Conference I 11 / 33



Problems with the SDP Formulation of FPCA

The SDP is inscalable to high dimensional input data.

The resulting solution is suboptimal due to the SDP relaxations

Instead of dealing with V directly, [Olfat and Aswani, 2019] optimize
w.r.t. P = VV ᵀ ∈ Rp×p

The orthogonality constraint V ᵀV = Id becomes rank(P) ≤ d , which
was then relaxed2 to tr(P) ≤ d .

As the fairness constraints were derived under Gaussian assumption,
they do not ensure an exact distribution equality.

Their SDP assumes that the underlying datas are Gaussian.
I Two projected sensitive groups have different distributions, yet have the

same first and second moments.
2This is exact when there’s no additional constraints [Olfat and Aswani, 2019]
Junghyun Lee (KAIST AI) MMD-based Fair PCA via Manifold Optim. KSC 2022 - Top Conference I 11 / 33



Outline

1 Introduction

2 Review of FPCA
Adversarial Definition [Olfat and Aswani, 2019]
Problems with FPCA

3 MbF-PCA
New Definition: ∆-fairness
Manifold Optimization for MbF-PCA

4 Experiments

5 Conclusion

Junghyun Lee (KAIST AI) MMD-based Fair PCA via Manifold Optim. KSC 2022 - Top Conference I 12 / 33



Maximum mean discrepancy (MMD)

We need a new definition of fairness in PCA that can
I directly lead to a tractable and exact optimization
I intuitive and be more easily interpretable

Definition ([Gretton et al., 2007])

Given µ, ν ∈ Pd and a positive-definite kernel k , their maximum mean
discrepancy (MMD) is a pseudo-metric on Pd , defined as followsa:

MMDk(µ, ν) := sup
f ∈Hk

∣∣∣∣∫
Rd

f d(µ− ν)

∣∣∣∣
aPd is the set of all possible probability measures defined on Rd ; Hk is the

Reproducing Kernel Hilbert Space (RKHS) generated by k

With characteristic kernels (ex. RBF kernel), MMDk becomes a metric on
Pd [Fukumizu et al., 2008].

From hereon and forth, we only consider MMD with the RBF kernel.
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Contribution #1. New Fair PCA Definition: ∆-fairness

Motivated from previous discussions, we propose a new definition for
fair PCA based on MMD, referred to as MbF-PCA:

Definition (∆-fairness (informal))

The dimensionality reduction Π : Rp → Rd is ∆-fair with ∆ being the
MMD of projected distributions, which is precisely the fairness metric.

Well-known properties of MMD [Gretton et al., 2007] already make it
superior over the previous adversarial definition:

∆̂ can be computed exactly and efficiently.

∆̂ is asymptotically consistent.

As it is a metric over Pd , no assumption on the datas is
necessary; MMD = 0 is itself the naturally induced fairness
constraint!
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Computational Efficiency

We consider the following estimator:

∆̂ := MMD(Q̂0(Π), Q̂1(Π)) (1)

where Q̂s(V ) is the (nonparametric) empirical measure3 of the
projected distribution corresponding sensitive variable s.

Unlike ∆̂A [Olfat and Aswani, 2019], ∆̂ can be computed exactly and
efficiently:

Lemma ([Gretton et al., 2007])

∆̂ is computed as follows:

∆̂ =

[
1

m2

m∑
i ,j=1

k(Xi ,Xj) +
1

n2

n∑
i ,j=1

k(Yi ,Yj)−
2

mn

m,n∑
i ,j=1

k(Xi ,Yj)

]1/2
. (2)

3the mixture of Dirac measures
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Asymptotic Consistency

Unlike ∆̂A [Olfat and Aswani, 2019], ∆̂ is asymptotic convergent, with
the rate depending only on m and n with no function class complexity
involved:

Theorem ([Gretton et al., 2007])

For any δ > 0, with probability at least 1− 2 exp
(
− δ2mn

2(m+n)

)
the following

holds: ∣∣∣∆− ∆̂
∣∣∣ ≤ 2

(
1√
m

+
1√
n

)
+ δ (3)
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Contribution #2. Fair PCA as Manifold Optimization

All of the aformentioned problems of FPCA [Olfat and Aswani, 2019]
were because the optimization(SDP) was not directly w.r.t. V

I The SDP was solved w.r.t. P = VV ᵀ ∈ Rp×p; the final solution is
obtained by the eigendecomposition of the resulting P∗.

Instead of trying to transform our problem into some surrogate opti-
mization problem (ex. SDP), let us optimize directly for V !

maximize
V∈Rp×d

〈Σ,VV ᵀ〉

subject to V ᵀV = Id ,

h(V ) := MMD2(Q̂0(V ), Q̂1(V )) = 0.

(4)

Above is a smooth, nonconvex Euclidean optimization with two
constraints.
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Fair PCA as Manifold Optimization

We utilize the manifold structure of PCA, namely, that the set of all
V ’s with V ᵀV = Id forms the Stiefel manifold, denoted as St(p, d).

Then the previous problem can be formulated as a smooth, nonconvex
manifold (Riemannian) with a single constraint, which we refer to as
MbF-PCA:

maximize
V∈St(p,d)

〈Σ,VV ᵀ〉

subject to h(V ) := MMD2(Q̂0, Q̂1) = 0.
(5)

This has several advantages:

No relaxation!

One less constraint!

Avoids (partly) the inscalability issue in high dimensions!
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REPMS for MbF-PCA

To solve this optimization, we use REPMS [Liu and Boumal, 2019], a
Riemannian counterpart for the exact penalty method:

Figure: Pseudocode of REPMS
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New Theoretical Guarantees

Under some mild conditions (see the paper for more details), we derive
two new theoretical guarantees for REPMS.

Theorem

Let K =∞, ρmax =∞, εmin = τ = 0, {Vk} be the sequence generated by
REPMS, and V be any limit point of {Vk}, whose existence is guaranteed.
Then the following holds:

I V always satisfies a necessary condition for V to be fair.

I If V is fair, then V is a local maximizer of Eq. (5)

Theorem (Informal)

Let K =∞, ρmax <∞, εmin, τ > 0. Then above holds approximately in
the following sense: as ρmax →∞ and εmin, τ → 0, we recover the previous
exact guarantees.
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Novelty of our theoretical guarantees

Existing optimality guarantee of REPMS (Proposition 4.2;
[Liu and Boumal, 2019]):

I εmin = τ = 0, ρ is not updated (i.e. line 10-14 is ignored)
I “If the resulting limit point is fair, then that limit point satisfies the

Riemannian KKT condition [Yang et al., 2014]”.

Our theoretical analyses4:
I εmin, τ ≥ 0, ρ is updated
I If the resulting limit point is (approximately) fair, then that limit point is

(approximately) local maximizer.

4We’ve incorporated a new, yet reasonable assumption; see our paper for more details.
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Synthetic data #1

Due to the Gaussian assumption, FPCA cannot cover the case when
two sensitive distributions, that are different, have the same first two
moments (mean, covariance):

(a) Original data (b) PCA (c) FPCA
[Olfat and Aswani, 2019]

(d) MbF-PCA
(ours)

Figure: Synthetic data #1: Comparison of PCA, FPCA, and MbF-PCA on data
composed of two groups with same mean and covariance, but different
distributions. Blue and orange represent different protected groups.
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Synthetic data #2
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Figure: Synthetic data #2: Comparison of PCA, FPCA, and MbF-PCA on the
synthetic datasets of increasing dimensions.
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Synthetic data #2
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Figure: FPCA represents the SDP algorithm for fair PCA, and MbF-PCA represents
our manifold-based framework. Note the drastic difference in scalability!
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UCI Datasets

Across all considered datasets, MbF-PCA is shown to outperform
FPCA in terms of fairness (MMD2 and ∆DP) with low enough τ .

I ∆DP : measure of demographic parity [Feldman et al., 2015] w.r.t. the
downstream task

For German Credit and Adult Income, controlling τ shows a
good trade-off between explained variance and fairness
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UCI Datasets

Figure: Comparison of communality of “age” of German credit dataset for PCA,
FPCA, and MbF-PCA.
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Conclusion

Our contributions:
MbF-PCA: a new framework for fair PCA, with several advantages
over the previous approach [Olfat and Aswani, 2019]

I New definition for fair PCA based on MMD.
I Utilization of manifold optimization framework.

Improved guarantees for REPMS [Liu and Boumal, 2019].

Empirical verification of our algorithm on synthetic and UCI datasets in
explained variance, fairness, and runtime.

Check out our paper for more details!

Paper Code (GitHub)
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Quick Intuition behind Manifold Optimization

Consider M, an embedded Riemannian sub-manifold of Rp×d .

Suppose we want to minimize some function f : Rp×d → R over M.

If M is simply viewed as a subset of Rp×d , then this is a constrained
optimization problem:

minimize
V

f (V )

subject to V ∈M.
(6)

In this case, the optimization algorithm will make use of the canonical
gradients and Hessians of Rp×d .
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Quick Intuition behind Manifold Optimization

If M is “all there is”, then this problem is an unconstrained
optimization problem over M.

I Consider an ant living on M. From the universe (Rp×d), the ant is
constrained on M. But from the ant’s perspective, M is all they have
i.e. he/she would feel unconstrained!

In this case, the optimization algorithm will make use of the
Riemannian gradients and Hessians of M.

By making use of the intrinsic geometry of M, the optimization
becomes much more efficient!
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Quick Intuition behind Manifold Optimization

A very straightforward way to think of this is by considering the
simplest Riemannian manifold5, Rp×d .

When we write the optimization as

minimize
V

f (V )

subject to V ∈ Rp×d ,
(7)

technically this is a “constrained” optimization because we’re
“constraining” V to be in Rp×d .

However, gradients and Hessian (and other geometric concepts) are
derived directly from the intrinsic geometry of Rp×d i.e. V ∈ Rp×d

isn’t considered as a constraint.

5inner product is the Frobenius product: 〈X ,Y 〉 := tr(X ᵀY )
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Extra Comments for Our New Theoretical Guarantees

Our problem is non-convex in V , which naturally brings up the
question of convergence and optimality guarantees.

First, from various Riemannian optim literatures, we motivate the
following assumption, which is to the best of our knowledge, new:

Assumption (informal; locality assumption)

Each Vk+1 is sufficiently close to a local minimum of Eq. (9).

I It is known that, pathological examples excluded, most conventional
unconstrained manifold optimization solvers produce iterates whose limit
points are local minima, and not other stationary points such as saddle
point or local maxima: see [Absil et al., 2007a, Absil et al., 2007b] for
more detailed discussions.

I Many theoretical results have also emerged (ex. “First-order methods
almost always avoid strict saddle points” Lee et al., Math. Prog. 2019)
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