

Contributions

- First theoretical analyses of model estimation (mainly clustering) and reward-free RL, *specific* to BMDPs.
- Our clustering algorithm is computationally tractable (no oracles required!)
- We depart from the function approximation framework, i.e., no additional structural assumption!
- \rightarrow Previous works (e.g., [1]) depend on a-priori chosen function class to approximate the decoding function f

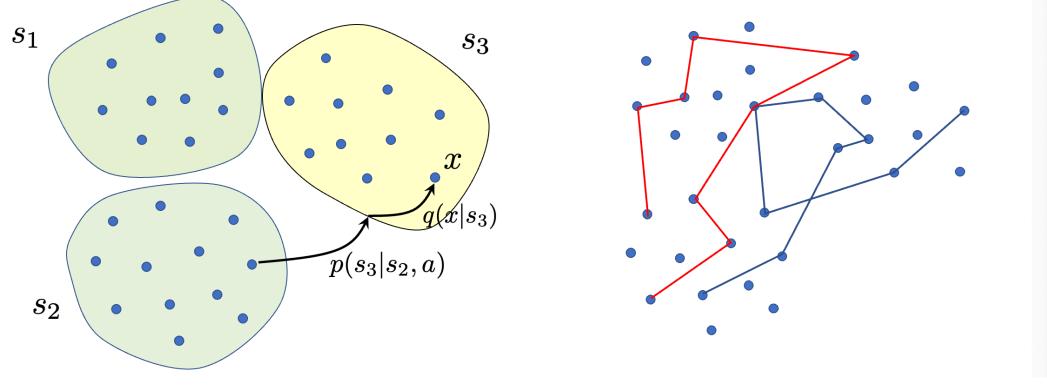
Block MDPs

BMDP Dynamics

In an episodic Block MDP (BMDP), the dynamics are defined by the tuple $(\mathcal{S}, \mathcal{X}, \mathcal{A}, p, q, f)$, where

- Latent dynamics (unknown) p(s'|s, a)
- Emission distribution (unknown) q(x'|s')
- Decoding function (unknown) $f: \mathcal{X} \to \mathcal{S}$

 \rightarrow Assumption 1. The clusters are disjoint, i.e., for all $s \neq s', f^{-1}(s) \cap f^{-1}(s') = \emptyset.$



Model vs. Observations

Learning Objective

Observations. T trajectories of length H, generated using the uniform behavior policy ρ :

$$\left\{(x_h^{(t)}, a_h^{(t)})_{h=1,\dots,H}\right\}_{t=1,\dots,T}$$

Objective. Find accurate estimates of f, p, and q.

We make the following assumptions

 \rightarrow Assumption 2. The latent dynamics and emission distribution are η -regular, i.e., for any $s, s' \in \mathcal{S}, a \in \mathcal{A}$, $x \in f^{-1}(s),$

$$p(s'|s,a) = \Theta\left(\frac{1}{S}\right), \ q(x|s) = \Theta\left(\frac{S}{n}\right)$$

 \rightarrow Assumption 3. The cluster sizes $|f^{-1}(s)|$ grow linearly with $n = |\mathcal{X}|$.

Nearly Optimal Latent State Decoding in Block MDPs

Yassir Jedra *

Junghyun Lee

[†]KAIST AI *KTH Royal Institute of Technology,

{jedra, alepro}@kth.se, {jh_lee00, yunseyoung}@kaist.ac.kr

Fundamental Limit

Lower Bound on Clustering Error

Theorem 1. (Informal) For any BMDP Φ and any good clustering algorithm, the number of misclassified contexts $|\mathcal{E}|$ must satisfy

$$\mathbb{E}_{\Phi}\left[\left|\mathcal{E}(\hat{f})\right|\right] \ge n \exp\left(-\frac{TH}{n}I(\Phi)(1+o_n(1))\right)$$

with $I(\Phi) = -\frac{n}{TH}\log\left(\frac{C}{n}\sum_{x\in\mathcal{X}}\exp\left(-\frac{TH}{n}I(x;\Phi)\right)\right)$

 \rightarrow Remark 1. The instance dependent constant $I(x; \Phi)$ measures the hardness of clustering context x, and $I(\Phi)$ the overall hardness of the instance.

 \rightarrow Remark 2. The proof is based on the *change-of*measure argument |2|.

- $|\mathcal{E}| = o(n)$ (asymptotically accurate clustering) only if $TH = \omega(n)$ and $I(\Phi) > 0$
- $|\mathcal{E}| = o(1)$ (asymptotically exact clustering) only if $TH - \frac{n \log n}{I(\Phi)} = \omega(1)$ and $I(\Phi) > 0$

Latent State Decoding

Clustering Algorithm

Our algorithm runs in two phases sketched below:

• Phase 1 (Initial Spectral Clustering)

 $\{(x_h^{(t)}, a_h^{(t)})_{h \in [H]}\}_{t \in [T]} \to \text{Matrix Estimation} \to (\widehat{N}_{a, \Gamma_a})_{a \in \mathcal{A}}$ $(\hat{N}_{a,\Gamma_{a}})_{a\in\mathcal{A}} \to S$ -Rank Approximation $\to (\hat{M}_{a})_{a\in\mathcal{A}}$ $(\hat{M}_a)_{a \in \mathcal{A}}, (\hat{M}_a^{\top})_{a \in \mathcal{A}} \rightarrow \text{Aggregation}$ $\rightarrow M$ $\hat{M} \rightarrow \ell_1$ -weighted K-medians $\rightarrow \hat{f}_1$

• Phase 2 (Improvement)

 $\hat{f}_1 \rightarrow$ Iterative Likelihood Improvement $\rightarrow \hat{f}$

 \rightarrow Remark 3. This is inspired by various literature on structure recovery in block models, e.g., [3].

Theoretical Guarantee on Initial Phase

Theorem 2. Provided $TH = \omega(n)$, and $I(\Phi) >$ 0, then we have

$$\frac{\mathcal{E}(\hat{f}_1)|}{n} \leq \mathcal{O}\left(\frac{nSA}{TH}\right) \qquad w.h.p.$$

 $\rightarrow |\mathcal{E}| = o(n)$ if $TH = \omega(n)$ and $I(\Phi) > 0$

Alexandre Proutiere *

Se-Young Yun [†]

Theoretical Guarantee after Improvement

Theorem 3.1. If $TH = \omega(n)$ and $I(\Phi) > 0$, then w.h.p.,

$$|\mathcal{E}(\hat{f})| \lesssim \sum_{x \in \mathcal{X}} \exp\left(-C\frac{TH}{n}I(x;\Phi)\right).$$

where $1/C = \text{poly}(\eta)$.

 $\rightarrow |\mathcal{E}| = o(1)$ if $TH - \frac{n \log n}{CI(x;\Phi)} = \omega(1)$ for all $x \in \mathcal{X}$ and $I(\Phi) > 0.$

Theoretical Guarantee on Model Estimation

We also provide guarantees on the plug-in estimators for the BMDP dynamics, \hat{p} and \hat{q} :

Theorem 3.2. The following holds w.h.p.: for all $(s, a) \in \mathcal{S} \times \mathcal{A}$,

$$d_{TV}(p(\cdot|s,a), \hat{p}(\cdot|s,a)) \lesssim \sqrt{\frac{S^3 A^2 \log(nSA)}{TH} + \frac{SA|\mathcal{E}(f)|}{n}}$$
$$d_{TV}(q(\cdot|s), \hat{q}(\cdot|s)) \lesssim \sqrt{\frac{Sn}{TH}} + \frac{S|\mathcal{E}(\hat{f})|}{n}$$

 \rightarrow Both estimation errors are of order o(1) if $TH = \omega(n)$ and $I(\Phi) > 0$.

Implications on Reward-Free RL

Preliminaries

Learning setup. In offline reward-free RL (ORF-RL), the setup is as follows:

- \rightarrow Estimation phase. From the data
- $(x_h^{(t)}, a_h^{(t)})_{h \in [H], t \in [T]}$, estimate the MDP $\hat{\Phi}$;
- \rightarrow Planning phase From the revealed reward function $r = (r_h)_{h \in [H]}$, compute $\hat{\pi}$ the optimal policy for $(\hat{\Phi}, r)$.
- *Objective.* Find a model estimation procedure with the optimal decay rates $\varepsilon(T, H, n)$ in T, H, n.
- \rightarrow Minimax setting:

$$\mathbb{P}\left(\sup_{r\in\mathcal{R}}V^{\star}(r) - V^{\hat{\pi}}(r) \le \varepsilon(T, H, n)\right) \ge 1 - o_{n}(1)$$

 \rightarrow Reward-specific setting: $\sup_{r \in \mathcal{R}} \mathbb{P}\left(V^{\star}(r) - V^{\hat{\pi}}(r) \le \varepsilon(T, H, n) \right) \ge 1 - o_n(1)$

 $(\mathcal{R} \text{ is the set of all possible reward functions})$

Theorem 5. (Reward-specific setting) Let $\epsilon =$ o(1) and $r \in \mathcal{R}$. For any BMDP Φ with $I(\Phi) >$ 0, any algorithm satisfying $\frac{1}{H}V^{\star}(r) - V^{\hat{\pi}}(r) < \epsilon$ requires $TH \gtrsim n \log(\frac{1}{\epsilon}) + \frac{SA}{\epsilon^2}$.

Near-Matching Upper Bounds Efficient Clustering + Planning \implies Optimality!

 \rightarrow Minimax setting: provided it holds that $TH = \omega(n)$, we have the following gains over the tabular setting Block MDPs $\sqrt{\frac{n}{TH}}$ vs. Tabular MDPs $\sqrt{\frac{n^2}{TH}}$ \rightarrow Reward-specific setting: provided it holds that TH = $\omega(n\log(n))$, ignoring dependencies on H, we have the

Block MDPs $\sqrt{\frac{1}{T}}$ vs. Tabular MDPs $\sqrt{\frac{n}{T}}$

- Agarwal, and Wen Sun. In *ICML*, 2022.

Lower Bounds

Theorem 4. (Minimax setting) For any BMDP Φ with $\Lambda(\Phi) > 0$, any algorithm satisfying $\mathbb{P}\left[\sup_{r\in\mathcal{R}}\frac{1}{H}V^{\star}(r) - V^{\hat{\pi}}(r) < \epsilon\right] \geq \frac{1}{2} \ requires$ $TH \gtrsim \frac{n\Lambda(\Phi)}{\epsilon^2}$, where $\Lambda(\Phi)$ doesn't depend on n.

 \rightarrow depends on the **estimation of** q, not the estimation of block structure!

 \rightarrow depends on the estimation of block structure!

Theorem 6, 7. Under our efficient clustering method with an additional planner, we achieve

 $\sup_{r \in \mathcal{R}} \frac{1}{H} \left| V^{\star}(r) - V^{\hat{\pi}}(r) \right| \lesssim \sqrt{\frac{n S^2 A^2 \log(SAH)}{TH}},$ $\frac{1}{H} \left| V^{\star}(r) - V^{\hat{\pi}}(r) \right| \lesssim \sqrt{\frac{S^3 A^2 H \log(SAHn)}{T}} + \frac{SH^2}{n} |\mathcal{E}(\hat{f})|$ w.h.p., provided $TH = \omega(n)$ and $I(\Phi) > 0$.

following gains over the tabular setting

References

[2] Tse L. Lai and Herbert Robbins. Asymptotically Efficient Adaptive Allocation Rules. Advances in Applied Mathematics, 6(1):4–22, 1985.

[3] Jaron Sanders, Alexandre Proutière, and Se-Young Yun. Clustering in Block Markov Chains. The Annals of Statistics, 48(6):3488 – 3512, 2020.

^[1] Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh

Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning Approach.