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Contributions

• First theoretical analyses of model estimation (mainly
clustering) and reward-free RL, specific to BMDPs.

• Our clustering algorithm is computationally tractable
(no oracles required!)

• We depart from the function approximation
framework, i.e., no additional structural assumption!

→ Previous works (e.g., [1]) depend on a-priori chosen function
class to approximate the decoding function f

Block MDPs

BMDP Dynamics
In an episodic Block MDP (BMDP), the dynamics are
defined by the tuple (S, X , A, p, q, f ), where
• Latent dynamics (unknown) p(s′|s, a)
• Emission distribution (unknown) q(x′|s′)
• Decoding function (unknown) f : X → S
→ Assumption 1. The clusters are disjoint, i.e., for all
s ̸= s′, f−1(s) ∩ f−1(s′) = ∅.

Model vs. Observations

Learning Objective
Observations. T trajectories of length H , generated
using the uniform behavior policy ρ:{

(x(t)
h , a

(t)
h )h=1,...,H

}
t=1,...,T

Objective. Find accurate estimates of f , p, and q.
We make the following assumptions
→ Assumption 2. The latent dynamics and emission
distribution are η-regular, i.e., for any s, s′ ∈ S, a ∈ A,
x ∈ f−1(s),

p(s′|s, a) = Θ
(1

S

)
, q(x|s) = Θ

(
S

n

)
.

→ Assumption 3. The cluster sizes |f−1(s)| grow lin-
early with n = |X |.

Fundamental Limit

Lower Bound on Clustering Error

Theorem 1. (Informal) For any BMDP Φ and
any good clustering algorithm, the number of
misclassified contexts |E| must satisfy

EΦ

[∣∣∣∣E(f̂ )
∣∣∣∣] ≥ n exp

(
−TH

n
I(Φ)(1 + on(1))

)

with I(Φ) = − n
TH log

(
C
n

∑
x∈X exp

(
−TH

n I(x; Φ)
))

→ Remark 1. The instance dependent constant I(x; Φ)
measures the hardness of clustering context x, and I(Φ)
the overall hardness of the instance.
→ Remark 2. The proof is based on the change-of-
measure argument [2].
• |E| = o(n) (asymptotically accurate clustering) only if
TH = ω(n) and I(Φ) > 0

• |E| = o(1) (asymptotically exact clustering) only if
TH − n log n

I(Φ) = ω(1) and I(Φ) > 0

Latent State Decoding

Clustering Algorithm
Our algorithm runs in two phases sketched below:
• Phase 1 (Initial Spectral Clustering)

{(x(t)
h , a

(t)
h )h∈[H ]}t∈[T ] → Matrix Estimation → (N̂a,Γa

)a∈A

(N̂a,Γa
)a∈A → S-Rank Approximation → (M̂a)a∈A

(M̂a)a∈A, (M̂⊤
a )a∈A → Aggregation → M̂

M̂ → ℓ1-weighted K-medians → f̂1

• Phase 2 (Improvement)
f̂1 → Iterative Likelihood Improvement → f̂

→ Remark 3. This is inspired by various literature on
structure recovery in block models, e.g., [3].

Theoretical Guarantee on Initial Phase

Theorem 2. Provided TH = ω(n), and I(Φ) >
0, then we have

|E(f̂1)|
n

≤ O
(

nSA

TH

)
w.h.p.

→ |E| = o(n) if TH = ω(n) and I(Φ) > 0

Theoretical Guarantee after Improvement

Theorem 3.1. If TH = ω(n) and I(Φ) > 0,
then w.h.p.,

|E(f̂ )| ≲
∑

x∈X
exp

(
−C

TH

n
I(x; Φ)

)
.

where 1/C = poly(η).

→ |E| = o(1) if TH − n log n
CI(x;Φ) = ω(1) for all x ∈ X and

I(Φ) > 0.

Theoretical Guarantee on Model Estimation
We also provide guarantees on the plug-in estimators for
the BMDP dynamics, p̂ and q̂:

Theorem 3.2. The following holds w.h.p.: for
all (s, a) ∈ S × A,

dTV (p(·|s, a), p̂(·|s, a)) ≲
√

S3A2 log(nSA)
TH

+ SA|E(f̂ )|
n

dTV (q(·|s), q̂(·|s)) ≲
√

Sn

TH
+ S|E(f̂ )|

n

→ Both estimation errors are of order o(1) if TH = ω(n)
and I(Φ) > 0.

Implications on Reward-Free RL

Preliminaries
Learning setup. In offline reward-free RL (ORF-RL),
the setup is as follows:

→ Estimation phase. From the data
(x(t)

h , a
(t)
h )h∈[H ],t∈[T ], estimate the MDP Φ̂;

→ Planning phase From the revealed reward function
r = (rh)h∈[H ], compute π̂ the optimal policy for (Φ̂, r).

Objective. Find a model estimation procedure with the
optimal decay rates ε(T, H, n) in T, H, n.

→ Minimax setting:

P
sup

r∈R
V ⋆(r) − V π̂(r) ≤ ε(T, H, n)

 ≥ 1 − on(1)

→ Reward-specific setting:
sup
r∈R

P
(
V ⋆(r) − V π̂(r) ≤ ε(T, H, n)

)
≥ 1 − on(1)

(R is the set of all possible reward functions)

Lower Bounds
Theorem 4. (Minimax setting) For any BMDP
Φ with Λ(Φ) > 0, any algorithm satisfying
P
[
supr∈R

1
HV ⋆(r) − V π̂(r) < ϵ

]
≥ 1

2 requires
TH ≳ nΛ(Φ)

ϵ2 , where Λ(Φ) doesn’t depend on n.

→ depends on the estimation of q, not the estimation
of block structure!

Theorem 5. (Reward-specific setting) Let ϵ =
o(1) and r ∈ R. For any BMDP Φ with I(Φ) >
0, any algorithm satisfying 1

HV ⋆(r) − V π̂(r) < ϵ
requires TH ≳ n log(1

ϵ) + SA
ϵ2 .

→ depends on the estimation of block structure!

Near-Matching Upper Bounds
Efficient Clustering + Planning =⇒ Optimality!

Theorem 6, 7. Under our efficient clustering
method with an additional planner, we achieve

sup
r∈R

1
H

∣∣∣V ⋆(r) − V π̂(r)
∣∣∣ ≲

√
nS2A2 log(SAH)

TH
,

1
H

∣∣∣V ⋆(r) − V π̂(r)
∣∣∣ ≲

√
S3A2H log(SAHn)

T
+ SH2

n
|E(f̂ )|

w.h.p., provided TH = ω(n) and I(Φ) > 0.

→ Minimax setting: provided it holds that TH = ω(n),
we have the following gains over the tabular setting

Block MDPs
√

n
TH vs. Tabular MDPs

√
n2

TH

→ Reward-specific setting: provided it holds that TH =
ω(n log(n)), ignoring dependencies on H , we have the
following gains over the tabular setting

Block MDPs
√

1
T vs. Tabular MDPs

√
n
T
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