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Motivation



Reinforcement Learning

Learning optimal sequential behaviour/control from interacting with the environment

• Unknown state dynamics and rewards
• Extremely large state and action spaces
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Numerous successes!

AlphaGo (Silver et al., 2016), robotic arm manipulation (Andrychowicz et al., 2020), flight
manoeuvres (Abbeel et al., 2010), chatGPT (OpenAI, 2023), etc
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• Many problems in reality are highly structured. What sort of structure in RL problems can
enable fast learning? Can we learn the structure efficiently?

• In this talk we focus on the rich observation (Krishnamurthy et al., 2016; Du et al.,
2019; Zhang et al., 2022) setting where
→ The decision maker has access to high dimensional contexts;
→ The dynamics depend on unobserved low dimensional latent states only;
→ The mapping between contexts and latent states is unknown

• How can the decision maker exploit the underlying structure?
• What improvements in the sample complexity can we expect?
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Our Contributions

• First instance-specific lower bound on the clustering error of BMDPs
• Computationally efficient (oracle-free) clustering algorithm with near-optimal upper bound

on the clustering error as well as estimation of the dynamics (p, q)
• Implication of near-optimal clustering to offline, reward-free RL in BMDPs:

• Improved sample complexities (lower bound and upper bound)
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Block MDPs



Context, Latent States, and Dynamics

A Block MDP is denoted by Φ = (X ,S,A, p, q, f ). The following are unknown to the learner:

• p is transition kernel of the latent dynamics: p(s ′|s, a)
• q denotes the emission probabilities: q(x |s ′) (prob. of emitting x at the latent state s ′)
• f : X → S is the decoding function: f (x) = s ⇐⇒ q(x |s) > 0

−→ Assumption 0. The clusters do not overlap: ∀s 6= s ′, q(·|s) ∩ q(·|s ′) = ∅

−→ Assumption 1. S,A, p are independent of n.

−→ Assumption 2. |f −1(s)| = αsn for some αs > 0 s.t.
∑

s∈S αs = 1.

−→ Assumption 4. µ ∼ U(X ), where µ is the distribution of the initial context.
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Block MDPs

Model vs. observations
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[Optional] Block MDPs vs. Linear MDPs

• Linear structure: P(x ′|x , a) = φ(x , a)>µ(x ′) with φ(x , a), µ(x ′) ∈ Rd .

• Block MDPs have a hidden linear structure in dimension d = SA:

φ(x , a) = e(f (x),a) and µ(x ′)(s,a) = q(x ′|f (x ′))p(f (x ′)|s, a)

Linear MDPs . 1 Block MDPs . LowRank MDPs

µ is unknown
φ is known

µ is unknown
φ is unknown
φ ∈ FBMDP

d = SA

µ is unknown
φ is unknown
φ ∈ F

• Linear structure in RL (Jin et al., 2020b)

Linear MDP︸ ︷︷ ︸
P(x ′|x ,a)=φ(x ,a)>µ(s′)

+ Structured rewards︸ ︷︷ ︸
r(x ,a)=φ(x ,a)>θ

=⇒ Q-function is linear︸ ︷︷ ︸
Qπ(x ,a)=φ(x ,a)>ξπ

1means smaller in terms of sample complexity
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η-Regularity

−→ Assumption 3. (η-regularity) There exists a η > 1 such that

(i) maxs1,s2∈S
αs1
αs2
≤ η (ii) maxa∈Amaxs1,s2,s3∈S

p(s2|s1,a)
p(s3|s1,a)

p(s1|s2,a)
p(s1|s2,a) ≤ η

(iii) maxs∈S maxx ,y∈X
q(x |s)
q(y |s) ≤ η (iv) maxa1,a2∈Amaxx ,y∈X

π(a1|x)
π(a2|y) ≤ η

−→ Remark 1. similar to SBMs (Abbe, 2018), DCBMs (Gao et al., 2018), Block Markov
Chains (Sanders et al., 2020), etc.

−→ Remark 2. Assumption 3 assures that every context is visited sufficiently many times with
uniform-like ρ. This can be relaxed to a weaker assumptions, e.g., aperiodic and communicating.

−→ Remark 3. Without Assumption 3, there can exist some under-explored latent state, which
unavoidably leads to constant error.

−→ Remark 4. η controls the mixing time and scaling of separation between clusters!
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Difference to Block Markov Chains (Sanders et al., 2020)

• Controllability of the Markov chains via action
• Possibly nonuniform emission probabilities at each latent state
• Doesn’t necessarily start from stationary distribution (e.g., it may be that H < tmix )

• This is compensated by uniform initial distribution (Assumption 4)
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Latent State Decoding
(Clustering)



The Data

T trajectories of length H,
{

(xh, ah)h∈[H],t∈[T ]
}

collected with some memoryless2, behavior
policy ρ.

(h = 1) (h = 2) . . . (h = H)
(t = 1) (x (1)

1 , a(1)
1 ), (x (1)

2 , a(1)
2 ), . . . , (x (1)

H , a(1)
H )

(t = 2) (x (2)
1 , a(2)

1 ), (x (2)
2 , a(2)

2 ), . . . , (x (2)
H , a(2)

H )
...

(t = T ) (x (T )
1 , a(T )

1 ), (x (T )
2 , a(T )

2 ), . . . , (x (T )
H , a(T )

H )

→ Remark. The data is Markovian across [H] and independent across [T ].

From this data, can we identify f in an optimal and computationally efficient manner?

2Our discussions can be partially extended to a more general history-dependent behavior policy.
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A clustering algorithm A would do the following(
x (t)

h , a(t)
h

)
h∈[H],t∈[T ]︸ ︷︷ ︸

Observations

−→ A︸︷︷︸
Clustering algorithm

−→ f̂︸︷︷︸
Decoding function

Number of misclassified contexts. (up to permutation σ)

E(f̂ ) := min
σ

⋃
s∈S

f̂ −1(σ(s))\f −1(s)

|E(f̂ )| := min
σ

∣∣∣∣∣⋃
s∈S

f̂ −1(σ(s))\f −1(s)

∣∣∣∣∣
Objective. Output f̂ that minimizes |E(f̂ )|.

Remark. We only care about the asymptotic dependencies on n,T ,H.
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Fundamental Lower Bound of
Latent State Decoding



→ Definition 1. A clustering algorithm A is said β-locally better-than-random in Φ̃ if the
following holds:

∀Φ̃ ∈ Vβ(Φ), PΦ̃

(
x ∈ E(f̂ )

)
≤ 1− 1

S

The β-neighborhood of Φ, Vβ(Φ) is defined as follows:

Vβ(Φ) =
{

Φ̃ :
{

maxy∈X :f (y)=f̃ (y) maxs∈S |q(y |s)− q̃(y |s)| ≤ β,∣∣y ∈ X : f (y) 6= f̃ (y)
∣∣ ≤ 1

}

β-locally better-than-random have reasonable performance and are stable to small model
perturbations; see our paper (Jedra et al., 2023) for more details.
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Theorem 1. Any algorithm that is β-locally better-than-random in Φ must satisfy

∀x ∈ X , PΦ

(
x ∈ E(f̂ )

)
& exp

(
−TH

n I(x ; Φ)(1 + on(1))
)

where n = |X |, and I(x ; Φ) is an information-theoretic constant specific to Φ.

Consequently, any such algorithm must also satisfy:

EΦ

[∣∣∣E(f̂ )
∣∣∣] ≥ n exp

(
−TH

n I(Φ)(1 + on(1))
)

where I(Φ) := − n
TH log

(C
n
∑

x∈X exp
(
−TH

n I(x ; Φ)
))

.

Proof based on the change-of-measure argument (Lai and Robbins, 1985).
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Some Remarks on I(x ; Φ) and I(Φ)

• I(x ; Φ) is defined through an optimization problem (Ugly expressions!)
• I(x ; Φ) is independent of n,T ,H.
• Context x in the BMDP instance Φ with small I(x ; Φ) is harder to cluster.

• If I(x ; Φ) > 0, then I(y ; Φ) > 0 for all y s.t. f (y) = f (x).
• I(x ; Φ) = 0 if and only if the transition rates to and out of the latent states f(x) and j are

identical3.
• I(Φ) > 0 if and only if minx∈X I(x ; Φ) > 0.

• Assumption 3 (η-regularity) is crucial, as without it, we may have very “heterogeneous”
BMDP with I(x ; Φ) varying significantly, even in the same cluster.

Importantly, the necessary conditions for the algorithm to be

asymptotically accurate (EΦ[|E|] = o(n)): I(Φ) > 0 and TH = ω(n)

asymptotically exact (EΦ[|E|] = o(1)): I(Φ) > 0 and TH − n log n
I(Φ) = ωn(1)

3There exists j 6= f (x) and c > 0 s.t. p(·|f (x), a) = p(·|j, a) and p(f (x)|·, a) = cp(·|j, a).
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[Optional] Proof of Theorem 1: Change-of-Measure Argument

Let A be an algorithm.

1. Select a perturbed model Ψ.
2. Relate the log-likelihood ratio of observations under Φ and Ψ to the performance metrics:
εA(Φ̂,Φ)↔ L(O).

3. Change-of-measure argument: EΦ[L(O)] ≥ KL(PΦ(A),PΨ(A)).
4. ”Good” algorithm: KL(PΦ(A),PΨ(A)) ≥ G(Φ,Ψ,T ) (T observed trajectories).
5. Maximize G(Φ,Ψ,T ) over the choice of Ψ.
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Near-Optimal Latent State
Decoding



Algorithm

We propose an algorithm that has a matching upper bound up to some universal constants.
The algorithm runs in two phases:

• Phase 1

{(x (t)
h , a(t)

h )t∈[T ],h∈[H]} −→ Matrix estimation −→ (N̂a,Γa )a∈A

(N̂a,Γa )a∈A −→ S-rank approximation −→
(

M̂a

)
a∈A

(M̂a)a∈A (M̂>a )a∈A −→ Aggregation −→ M̂
M̂ −→ `1-weighted K-medians −→ f̂1

• Phase 2

f̂1 −→ Iterative Likelihood Improvement −→ f̂

17



Phase 1: Spectral Clustering
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• Empirical observation matrices:

N̂a(x , y) =
∑
t,h

1
{

(x (t)
h , a(t)

h , a(t)
h+1) = (x , a, y)

}
• Trimming (Regularization)

N̂a,Γa (x , y) = N̂a(x , y)1 {(x , y) ∈ Γa × Γa}

where Γa ⊆ X is obtained by trimming
⌊
n exp

(
−TH

nA log
(TH

nA
))⌋

contexts x with the
highest number of visits of (x , a).

Proposition 19. (Markovian matrix concentration)

P

(
max
a∈A
‖N̂a,Γa − Ña‖ . poly(η)

√
TH
nA

)
≥ 1−O

(
1
n + e− TH

nA

)

• Proof inspired by Feige and Ofek (2005); Keshavan et al. (2010); Le et al. (2017); Sanders et al.
(2020); Sanders and Senen–Cerda (2023).

• Key point: Bernstein concentration bounds for Markov chains with restarts!
• Slightly generalizes the Markovian Bernstein concentration of Paulin (2015).
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Theorem 2. (Misclassification error of Phase 1) Provided TH = ω(n), and I(Φ) > 0, then we
have

|E(f̂1)|
n ≤ O

(
nSA
TH

)
= o(1) w .h.p.

→ asymptotically accurate clustering!

20



Phase 2: Iterative Likelihood Improvement

• The form of L(`) is inspired by the derivation of the lower bound.

21



Theorem 3. (Final misclassification error) If TH = ω(n) and I(Φ) > 0, then

|E(f̂ )|
n = O

(
1
n
∑
x∈X

exp
(
−C ′TH

n I(x ; Φ)
))

where C ′ = 1/poly(η).

• If f̂1 is sufficiently good (Theorem 2), then the likelihood iterations are contractive and
convergence to the optimal f is guaranteed with high probability.

→ Exact clustering when TH − n log(n)
C ′I(x ;Φ) = ωn(1) for all x ∈ X

• Compare with the necessary condition from the lower bound: TH − n log n
I(Φ) = ωn(1)
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Model estimation.
With the final estimated f̂ , the plug-in estimators give a good estimate of the transition
dynamics:

Theorem 3. For all (s, a) ∈ S ×A, we have

dTV (p(·|s, a), p̂(·|s, a)) .
√

S3A2 log(nSA)
TH + SA|E(f̂ )|

n

dTV (q(·|s), q̂(·|s)) .
√

Sn
TH + S|E(f̂ )|

n

w.h.p. provided TH = ω(n) and I(Φ) > 0.

−→ Remark. We don’t know whether this rate is (minimax) optimal for BMDPs. It would be
interesting to see whether recent works on Markov chain estimation (Wolfer and Kontorovich, 2021;
Banerjee et al., 2022) can give some insights.
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Experiments on Synthetic BMDP Environments
We consider a BMDP environment where η-regularity holds.

Varying number of episodes T Varying episode length H Varying problem di�culty η

Er
ro

r r
at

e

 η H  η T

(a) (b) (c)

Initial Spectral Clustering Init. Spec. + Likelihood Improvement

We plot the clustering error against T ,H and η.

See Lee and Yun (2022) for more details.
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Experiments on Synthetic BMDP Environments
We now consider a BMDP environment where η-regularity does not hold.

Varying proportion of trajectories to be corrupted δ1 Varying proportion of actions to be corrupted δ3

Er
ro

r r
at

e

 δ2  δ3 δ1

(a) (b) (c)

Initial Spectral Clustering Init. Spec. + Likelihood Improvement

Varying proportion of contexts to be corrupted δ2

We plot the clustering error against some corruption parameters δ1, δ2 and δ3. (δ1T
trajectories, δ2n contexts, δ3A actions corrupted)

See Lee and Yun (2023) for more details.
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From Clustering to
Offline, Reward-Free RL



RL Preliminaries. A Block MDP Φ = (X ,S,A, p, q, f ,H)

• Deterministic rewards r ∈ R such that

∀h ∈ [H],∀(x , a) ∈ X ×A, rh(x , a) ∈ [0, 1]

• Value function of a policy π = (πh)h∈[H],

V π(r) = EΦ

[ H∑
h=1

rh(xh, πh(xh))
]

• Optimal policy π?(r) and it value V ?(r)

π?(r) ∈ arg max
π∈Π

V π(r) and V ?(r) = V π?(r)(r)
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In offline, reward-free RL (Jin et al., 2020a; Ren et al., 2021; Yin and Wang, 2021), the setup
is as follows:

1. Estimation phase. From the given data (x (t)
h , a(t)

h )h∈[H],t∈[T ], estimate the (B)MDP Φ̂;
2. Planning phase. From the revealed reward function (rh)h∈[H], compute π̂ the optimal

policy for (Φ̂, r).

Objectives. Find a model estimation procedure so that

P
(

sup
r∈R

V ?(r)− V π̂(r) ≤ ε(T ,H, n)
)
≥ 1− on(1) (Minimax reward)

∀r ∈ R, P
(
V ?(r)− V π̂(r) ≤ ε(T ,H, n)

)
≥ 1− on(1) (Reward specific)

with the best decay rates ε(T ,H, n) in T ,H, n. Here, R is the set of all possible reward
functions.
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Lower Bounds

Theorem 6. (minimax reward) Let Φ be a BMDP such that I(Φ) > 0, then any algorithm that
guarantees

P
(

sup
r∈R

1
H V ?(r)− V π̂(r) < ε

)
>

1
2 ,

requires TH = Ω
(

nΛ(Φ)
ε2

)
samples, where Λ(Φ) is some well-defined quantity4 that does not

depend on n,T ,H.

• Gain over tabular MDPs (no structure). For minimax reward setting in tabular MDPs, the
lower bound (Menard et al., 2021; Yin and Wang, 2021) is Ω( H3An2

ε2 )
• Improvement of order n and H3

4Precisely, Λ(Φ) = maxv∈[−1,1]S
1
S
∑S

s=1 maxa1,a2 〈p(·|s, a1)− p(·|s, a2), v〉, taken from Jin et al. (2020a).
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Lower Bounds

Theorem 7. (reward specific) Let Φ be a block MDP such that I(Φ) > 0, then for all r ∈ R
initially revealed to the algorithm, for the algorithm to satisfy

1
H EΦ[V ?(r)− V π̂(r)] ≤ ε,

requires TH = Ω
(

n
I(Φ) log

( 1
ε

)
+ SA

ε2

)
samples.

• Gain over tabular MDPs (no structure). For reward specific setting in tabular MDPs, the
lower bound is Ω( HAn

ε2 ) with matching upper bound (Menard et al., 2021; Ren et al., 2021).
• The gain is Ω

(
n log( 1

ε ) + 1
ε2

)
vs. Ω( Hn

ε2 )
• ex) If ε = 1/√n, then Ω(n log n) vs. Ω(Hn2), i.e., improvement by a factor of Hn/ log n
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Upper Bounds

Efficient Clustering + Planning =⇒ Minimax optimality

Theorem 8. Under our efficient clustering method with an additional planner we achieve

sup
r∈R

1
H
∣∣V ?(r)− V π̂(r)

∣∣ = O
(√

nS2A2 log(SAH)
TH

)

1
H
∣∣V ?(r)− V π̂(r)

∣∣ = O
(√

S3A2H log(SAHn)
T + SH2

n
∑
x∈X

exp
(
−TH

n I(x ; Φ)
))

w.h.p., provided TH = ω(n) and I(Φ) > 0.

• These (nearly) match our lower bounds.
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Conclusion



Concluding Remarks

Related work: use function approximations and optimization oracles to approximate the latent
state decoding function (Jiang et al., 2017; Dann et al., 2018; Du et al., 2019; Misra et al.,
2020; Foster et al., 2021; Zhang et al., 2022).

- Sample complexity scaling as log |F|/ε2 where F is the class of approximation functions;
- Without any further assumption, log |F| ≈ n, and no gain vs tabular MDP!
- Intractable algorithm (in principle) due to the dependency on oracles.

Our contributions: First instance-specific lower and near-optimal efficient clustering algorithm
for BMDPs, as well as order-optimal sample complexities in offline, reward-free RL.

Future Directions:

- No clever exploration scheme, can we be adaptive and do better?
- Interleaved estimation and exploration?
- Removing/Relaxing Assumption 3 (η-regularity)
- BMDP with corruptions?
- Beyond block structures → low-rank, hierarchical, latent MDPs...etc.
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Thank you for your attention!
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