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Contributions

• We propose regret-to-confidence-set conversion
(R2CS), a new framework for converting achievable
online learning regret bound to a confidence sequence,
without ever running the algorithm!

• We apply R2CS to obtain the tightest confidence set for
(multinomial) logistic losses, leading to the state-of-the-art
regret guarantees for (multinomial) logistic bandits!

• Our confidence set is also numerically tight, leading to the
best numerical regret by a large margin.

Logistic Bandits

Problem Setting
For t ∈ [T ]:
1 The learner observes a potentially infinite (contextual)

arm-set Xt ⊂ Rd

2 The learner chooses xt ∈ Xt according to some policy
3 Receive a binary reward rt|xt ∼ Ber(µ(⟨xt, θ⋆⟩)),

• θ⋆ ∈ Rd is unknown
• µ(z) = (1 + e−z)−1 is the logistic function

Goal. Minimize:

RegB(T ) :=
T∑

t=1
{µ(⟨xt,⋆, θ⋆⟩) − µ(⟨xt, θ⋆⟩)} ,

where xt,⋆ := arg maxx∈Xt
µ(⟨x, θ⋆⟩).

Applications. Discrete-valued rewards in interactive machine
learning (e.g., clicks in news recommendations; Li et al. [2010])

Standard assumptions [Abeille et al., 2021]:
→ Assumption 1. Xt ⊆ Bd(1) for all t ≥ 1.
→ Assumption 2. θ⋆ ∈ Bd(S) with known S > 0.

We define the following problem-dependent quantities:

κ⋆(T ) :=

 1
T

T∑
t=1

µ̇(x⊺
t,⋆θ⋆)

−1

, κX (T ) :=max
t∈[T ]

max
x∈Xt

1
µ̇(x⊺θ⋆)

,

and κ(T ) := max
t∈[T ]

max
x∈Xt

max
θ∈Bd(S)

1
µ̇(x⊺θ)

.

These can scale exponentially in S!

Prior Regret Guarantees
Regret lower bound:

Theorem 2 of Abeille et al. [2021]. Let Xt = Sd(1).
Then, for any problem instance θ⋆ and T ≥ d2κ⋆(θ⋆),
there exists ϵT such that:

min
π:policy

max
∥θ−θ⋆∥2≤ϵT

E[RegB
θ,π(T )] ≥ Ω

(
d

√
T

κ⋆(θ⋆)

)
.

Regret upper bounds:
• OFULog [Abeille et al., 2021]: Non-convex confidence-set

based UCB algorithm

dS
3
2

√
T

κ⋆(T )
+ min

{
d2S3κX (T ), RX (T )

}
.

• OFULog-r [Abeille et al., 2021]: Convex, loss-based
confidence-set based UCB algorithm

dS
5
2

√
T

κ⋆(T )
+ min

{
d2S4κX (T ), RX (T )

}
.

• ada-OFU-ECOLog [Faury et al., 2022]: Online Newton
step-based algorithm

dS

√
T

κ⋆(T )
+ d2S6κ(T ).

Questions

• Can we construct tighter convex, loss-based confidence
set, with improved dependency on S?

• Can this lead to a UCB algorithm that matches or beats
ada-OFU-ECOLog?

• Does this lead to numerically meaningful performance?

Regret-to-Confidence-Set (R2CS)

R2CS starts by directly constructing a likelihood loss-based con-
fidence set centered around the norm-constrained, unregularized
maximum likelihood estimator (MLE), θ̂t:

θ̂t := arg min
∥θ∥2≤S

Lt(θ) ≜
t−1∑
s=1

ℓs(θ)

 , (1)

where ℓs is the logistic loss at time s, defined as
ℓs(θ) := −rs log µ(⟨xs, θ⟩) − (1 − rs) log(1 − µ(⟨xs, θ⟩)).

Theorem 1. We have P[∀t ≥ 1, θ⋆ ∈ Ct(δ)], where
Ct(δ) =

{
θ ∈ Bd(S) : Lt(θ) − Lt(θ̂t) ≤ βt−1(δ)2

}
, (2)

βt(δ) =

√√√√10d log
(

St

4d
+ e

)
+ 2((e − 2) + S) log 1

δ
. (3)

This is a strict improvement over OFULog-r, which has the con-
fidence radius of Oδ

(√
dS3 log t

)
.

Proof of R2CS for Logistic Losses
1. Decompose ℓs.
To use martingale concentrations, we begin by writing

rs = µ(⟨xs, θ⋆⟩) + ξs,

where ξs is a real-valued martingale difference noise.
The proof relies on the following two crucial lemmas:

Lemma 1. The following holds for any θ:
ℓs(θ⋆) = ℓs(θ) + ξs⟨xs, θ − θ⋆⟩ − KL(µs(θ⋆), µs(θ)).

Lemma 2. The following holds for any {θ̃s}:
Lt+1(θ⋆) − Lt+1(θ̂t) ≤ RegO(t) + ζ1(t) − ζ2(t), (4)

where
RegO(t) :=

t∑
s=1

{
ℓs(θ̃s) − ℓs(θ̂t)

}
,

ζ1(t) :=
t∑

s=1
ξs⟨xs, θ⋆ − θ̃s⟩, ζ2(t) :=

t∑
s=1

KL(µs(θ⋆), µs(θ̃s)).

RegO(t) is the regret incurred by the online learning algo-
rithm of our choice up to time t, ζ1(t) is a sum of martin-
gale difference sequences, and ζ2(t) is a sum of KL’s.

Proof sketch. Lemma 1 follows from the first-order Taylor ex-
pansion with integral remainder and careful terms rearranging.
Lemma 2 then follows immediately.

2. Use state-of-the-art online regret for RegO(t).

Theorem 3 of Foster et al. [2018]. There is an online
logistic regression algorithm with the following regret:

RegO(t) ≤ 10d log
(

St

2d
+ e

)
. (5)

We get d log S instead of dS, for free!

3. Use time-uniform Freedman to bound ζ1(t).

Consequence of Lemma 3. For any η ∈
[
0, 1

2S

]
, the

following holds w.p. at least 1 − δ: for all t ≥ 1,

ζ1(t) ≤ (e − 2)η
t∑

s=1
µ̇(x⊺

sθ⋆)⟨xs, θ⋆ − θ̃s⟩2 + 1
η

log 1
δ
. (6)

4. Use information-geometry to bound ζ2(t).

Lemma 4. KL(µ(z2), µ(z1)) = Dm(z1, z2), where Dm is
the Bregman divergence generated by m(z) = log(1 + ez).

Combined with the self-concordant analysis [Abeille et al., 2021,
Lemma 8], we obtain the following:

− ζ2(t) ≤ − 1
2 + 2S

t∑
s=1

µ̇(x⊺
sθ⋆)⟨xs, θ⋆ − θ̃s⟩2. (7)

5. Combine everything.
Set η = 1

2(e−2)+2S , and plug Eqn. (5), (6), and (7) into Eqn. (4).

OFULog+

OFULog+ is of the following form:
1 Obtain θ̂t (Eqn. (1)) and Ct(δ) (Theorem 1)
2 Solve (xt, θt) = arg maxx∈Xt,θ∈Ct(δ) µ(⟨x, θ⟩)
3 Play xt, then observe/receive a reward rt ∈ {0, 1}.
We then have the following state-of-the-art regret bound:

Theorem 3. OFULog+ attains the following regret bound
with probability at least 1 − δ:

RegB(T ) ≲δ dS

√
T

κ⋆(T )
+ min

{
d2S2κX (T ), RX (T )

}
,

where RX (T ) is a term relating to the arm set geome-
try [Abeille et al., 2021, Section 4].

Proof novelties. Time-uniform Freedman (Lemma 3) and ellip-
tical potential count lemma [Gales et al., 2022, Lemma 7].

Experiments

(a) S = 5 (b) S = 10
Figure 1:Numerical regrets.

(a) S = 5 (b) S = 10
Figure 2:Confidence sets at t = 4000 from a single run.

Multinomial Logistic (MNL) Bandits

Via R2CS, we attain the state-of-the-art regret bound for MNL
bandits over prior arts [Amani and Thrampoulidis, 2021, Zhang
and Sugiyama, 2023]:

Theorem 5. MNL-UCB+ attains the following regret
bound with probability at least 1 − δ:

RegB(T ) ≲δ d
√

KS min
{
κ(T )T,

√
ST + dKSκ(T )

}
.

Open Problems

• poly(S)-free regret for (multinomial) logistic bandits?
• Extension to GLM bandits?
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