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Contributions

• We propose regret-to-confidence-set conversion
(R2CS), a new framework for converting achievable
online learning regret bound to a confidence sequence,
without ever running the algorithm!

• We apply R2CS to obtain the tightest confidence set for
(multinomial) logistic losses, leading to the state-of-the-art
regret guarantees for (multinomial) logistic bandits!

• Our confidence set is also numerically tight, leading to the
best numerical regret by a large margin.

Logistic Bandits

Problem Setting
For t ∈ [T ]:
1 The learner observes a potentially infinite (contextual)

arm-set Xt ⊂ Rd

2 The learner chooses xt ∈ Xt according to some policy
3 Receive a binary reward rt|xt ∼ Ber(µ(⟨xt, θ⋆⟩)),

• θ⋆ ∈ Rd is unknown
• µ(z) = (1 + e−z)−1 is the logistic function

Goal. Minimize:

RegB(T ) :=
T∑

t=1
{µ(⟨xt,⋆, θ⋆⟩) − µ(⟨xt, θ⋆⟩)} ,

where xt,⋆ := arg maxx∈Xt
µ(⟨x, θ⋆⟩).

Applications. Discrete-valued rewards in interactive machine
learning (e.g., clicks in news recommendations; Li et al. [2010])

Standard assumptions [Abeille et al., 2021]:
→ Assumption 1. Xt ⊆ Bd(1) for all t ≥ 1.
→ Assumption 2. θ⋆ ∈ Bd(S) with known S > 0.

We define the following problem-dependent quantities:

κ⋆(T ) :=

 1
T

T∑
t=1

µ̇(x⊺
t,⋆θ⋆)

−1

, κX (T ) :=max
t∈[T ]

max
x∈Xt

1
µ̇(x⊺θ⋆)

,

and κ(T ) := max
t∈[T ]

max
x∈Xt

max
θ∈Bd(S)

1
µ̇(x⊺θ)

.

These can scale exponentially in S!

Prior Regret Guarantees
Regret lower bound:

Theorem 2 of Abeille et al. [2021]. Let Xt = Sd(1).
Then, for any problem instance θ⋆ and T ≥ d2κ⋆(θ⋆),
there exists ϵT such that:

min
π:policy

max
∥θ−θ⋆∥2≤ϵT

E[RegB
θ,π(T )] ≥ Ω

(
d

√
T

κ⋆(θ⋆)

)
.

Regret upper bounds:
• OFULog [Abeille et al., 2021]: Non-convex confidence-set

based UCB algorithm

dS
3
2

√
T

κ⋆(T )
+ min

{
d2S3κX (T ), RX (T )

}
.

• OFULog-r [Abeille et al., 2021]: Convex, loss-based
confidence-set based UCB algorithm

dS
5
2

√
T

κ⋆(T )
+ min

{
d2S4κX (T ), RX (T )

}
.

• ada-OFU-ECOLog [Faury et al., 2022]: Online Newton
step-based algorithm

dS

√
T

κ⋆(T )
+ d2S6κ(T ).

Questions

• Can we construct tighter convex, loss-based confidence
set, with improved dependency on S?

• Can this lead to a UCB algorithm that matches or beats
ada-OFU-ECOLog?

• Does this lead to numerically meaningful performance?

Regret-to-Confidence-Set (R2CS)

R2CS starts by directly constructing a likelihood loss-based con-
fidence set centered around the norm-constrained, unregularized
maximum likelihood estimator (MLE), θ̂t:

θ̂t := arg min
∥θ∥2≤S

Lt(θ) ≜
t−1∑
s=1

ℓs(θ)

 , (1)

where ℓs is the logistic loss at time s, defined as
ℓs(θ) := −rs log µ(⟨xs, θ⟩) − (1 − rs) log(1 − µ(⟨xs, θ⟩)).

Theorem 1. We have P[∀t ≥ 1, θ⋆ ∈ Ct(δ)], where
Ct(δ) =

{
θ ∈ Bd(S) : Lt(θ) − Lt(θ̂t) ≤ βt−1(δ)2

}
, (2)

βt(δ) =

√√√√10d log
(

St

4d
+ e

)
+ 2((e − 2) + S) log 1

δ
. (3)

This is a strict improvement over OFULog-r, which has the con-
fidence radius of Oδ

(√
dS3 log t

)
.

Proof of R2CS for Logistic Losses
1. Decompose ℓs.
To use martingale concentrations, we begin by writing

rs = µ(⟨xs, θ⋆⟩) + ξs,

where ξs is a real-valued martingale difference noise.
The proof relies on the following two crucial lemmas:

Lemma 1. The following holds for any θ:
ℓs(θ⋆) = ℓs(θ) + ξs⟨xs, θ − θ⋆⟩ − KL(µs(θ⋆), µs(θ)).

Lemma 2. The following holds for any {θ̃s}:
Lt+1(θ⋆) − Lt+1(θ̂t) ≤ RegO(t) + ζ1(t) − ζ2(t), (4)

where
RegO(t) :=

t∑
s=1

{
ℓs(θ̃s) − ℓs(θ̂t)

}
,

ζ1(t) :=
t∑

s=1
ξs⟨xs, θ⋆ − θ̃s⟩, ζ2(t) :=

t∑
s=1

KL(µs(θ⋆), µs(θ̃s)).

RegO(t) is the regret incurred by the online learning algo-
rithm of our choice up to time t, ζ1(t) is a sum of martin-
gale difference sequences, and ζ2(t) is a sum of KL’s.

Proof sketch. Lemma 1 follows from the first-order Taylor ex-
pansion with integral remainder and careful terms rearranging.
Lemma 2 then follows immediately.

2. Use state-of-the-art online regret for RegO(t).

Theorem 3 of Foster et al. [2018]. There is an online
logistic regression algorithm with the following regret:

RegO(t) ≤ 10d log
(

St

2d
+ e

)
. (5)

We get d log S instead of dS, for free!

3. Use time-uniform Freedman to bound ζ1(t).

Consequence of Lemma 3. For any η ∈
[
0, 1

2S

]
, the

following holds w.p. at least 1 − δ: for all t ≥ 1,

ζ1(t) ≤ (e − 2)η
t∑

s=1
µ̇(x⊺

sθ⋆)⟨xs, θ⋆ − θ̃s⟩2 + 1
η

log 1
δ
. (6)

4. Use information-geometry to bound ζ2(t).

Lemma 4. KL(µ(z2), µ(z1)) = Dm(z1, z2), where Dm is
the Bregman divergence generated by m(z) = log(1 + ez).

Combined with the self-concordant analysis [Abeille et al., 2021,
Lemma 8], we obtain the following:

− ζ2(t) ≤ − 1
2 + 2S

t∑
s=1

µ̇(x⊺
sθ⋆)⟨xs, θ⋆ − θ̃s⟩2. (7)

5. Combine everything.
Set η = 1

2(e−2)+2S , and plug Eqn. (5), (6), and (7) into Eqn. (4).

OFULog+

OFULog+ is of the following form:
1 Obtain θ̂t (Eqn. (1)) and Ct(δ) (Theorem 1)
2 Solve (xt, θt) = arg maxx∈Xt,θ∈Ct(δ) µ(⟨x, θ⟩)
3 Play xt, then observe/receive a reward rt ∈ {0, 1}.
We then have the following state-of-the-art regret bound:

Theorem 3. OFULog+ attains the following regret bound
with probability at least 1 − δ:

RegB(T ) ≲δ dS

√
T

κ⋆(T )
+ min

{
d2S2κX (T ), RX (T )

}
,

where RX (T ) is a term relating to the arm set geome-
try [Abeille et al., 2021, Section 4].

Proof novelties. Time-uniform Freedman (Lemma 3) and ellip-
tical potential count lemma [Gales et al., 2022, Lemma 7].

Experiments

(a) S = 5 (b) S = 10
Figure 1:Numerical regrets.

(a) S = 5 (b) S = 10
Figure 2:Confidence sets at t = 4000 from a single run.

Multinomial Logistic (MNL) Bandits

Via R2CS, we attain the state-of-the-art regret bound for MNL
bandits over prior arts [Amani and Thrampoulidis, 2021, Zhang
and Sugiyama, 2023]:

Theorem 5. MNL-UCB+ attains the following regret
bound with probability at least 1 − δ:

RegB(T ) ≲δ d
√

KS min
{
κ(T )T,

√
ST + dKSκ(T )

}
.

Open Problems

• poly(S)-free regret for (multinomial) logistic bandits?
• Extension to GLM bandits?

References

M. Abeille et al. Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits. In AIS-
TATS, 2021.

S. Amani and C. Thrampoulidis. UCB-based Algorithms for Multinomial Logistic Regression
Bandits. In NeurIPS, 2021.

L. Faury et al. Jointly Efficient and Optimal Algorithms for Logistic Bandits. In AISTATS,
2022.

D. J. Foster et al. Logistic Regression: The Importance of Being Improper. In COLT, 2018.
S. B. Gales et al. Norm-Agnostic Linear Bandits. In AISTATS, 2022.
L. Li et al. A Contextual-Bandit Approach to Personalized News Article Recommendation.
In WWW, 2010.

Y.-J. Zhang and M. Sugiyama. Online (Multinomial) Logistic Bandit: Improved Regret and
Constant Computation Cost. In NeurIPS, 2023.


	References

