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Logistic Bandits 101

• Useful in modeling exploration-exploitation dilemma with binary/discrete-valued 
rewards and items’ feature vectors 

• e.g., news recommendation (‘click’, ‘no click’), online ad placement (‘click’, ‘show 
me later’, ‘never show again’, ‘no click’) 

• Naive reduction to linear bandits is quite suboptimal[Li et al., WWW’10; ICMLW’11]!

Motivation



Logistic Bandits 101

For : 

1. The learner observes a potentially infinite (contextual) arm-set  

2. The learner chooses  according to some policy 

3. Receive a binary reward  
•  is unknown to the learner 

•  is the logistic function,  is its first derivative 

Goal: 

Minimize , where .

t ∈ [T]

𝒳t ⊂ ℝd

xt ∈ 𝒳t

rt ∼ Ber(μ(⟨xt, θ⋆⟩))
θ⋆

μ(z) := (1 + e−z)−1 ·μ(z) = μ(z)(1 − μ(z))

RegB(T) :=
T

∑
t=1

{μ(⟨xt,⋆, θ⋆⟩) − μ(⟨xt, θ⋆⟩)} xt,⋆ := argmaxx∈𝒳t
⟨x, θ⋆⟩

Problem Setting



Logistic Bandits 101

Assumption 1.   

Assumption 2.   => today’s main quantity of interest! 

We consider the following quantities describing the difficulty of the problem: 

 

They can scale exponentially in  [Faury et al., ICML’20]

∞

⋃
t=1

𝒳t ⊆ Bd(1)

θ⋆ ∈ Bd(S)

κ⋆(T) := ( 1
T

T

∑
t=1

·μ(⟨xt,⋆, θ⋆⟩))
−1

, κ𝒳(T) := max
t∈[T]

max
x∈𝒳t

1
·μ(⟨x, θ⋆⟩)

.

S

Assumptions



Logistic Bandits 101

Theorem 2. [Local Lower-Bound; Abeille et al., AISTATS’21]  Let  and . Then, for any problem instance  and for , there 
exists  such that: 

𝒳t = Sd(1) θ⋆ T ≥ d2κ⋆(θ⋆)
ϵT > 0

min
π: policy

max
∥θ−θ⋆∥2≤ϵT

𝔼[RegB
θ,π] ≥ Ω d

T
κ⋆(θ⋆)

.

 is minimax optimal (taken from slides of L. Faury on his website)d T/κ⋆(T)

• More nonlinear (flatter tail), the easier! 

• Transient regret (small ): 

• Exploration of “detrimental” arms 

• Permanent regret (large ): 

• Sub-linear regret, as the estimate is 
sufficiently close to  

• Linear bandit with local slope around , 

t

t

θ⋆

θ⋆
·μ(⟨x⋆, θ⋆⟩) ∼

1
κ⋆(T )



Logistic Bandits 101

• OFULog [Abeille et al., AISTATS’21]. Non-convex confidence-set-based UCB algorithm 

 

• OFULog-r [Abeille et al., AISTATS’21]. Convex relaxation of OFULog ~ loss-based confidence set 

 

• ada-OFU-ECOLog [Faury et al., AISTATS’22]. Online Newton step [Hazan et al., 2007]-based algorithm 

 

Can we construct tighter (improved dependency in ) loss-based confidence set?? Can we make 
UCB great again (i.e., UCB-type algorithm that matches or beats ada-OFU-ECOLog)?

dS
3
2

T
κ⋆(T )

+ min {d2S3κ𝒳(T ), R𝒳(T )}

dS
5
2

T
κ⋆(T )

+ min {d2S4κ𝒳(T ), R𝒳(T )}

dS
T

κ⋆(T )
+ d2S6κ(T )

S

State-of-the-Arts, so-far



Logistic Bandits 101

• OFULog and OFULog-r are of the following form: 

1. Solve  , where  

2. Obtain a confidence-set  satisfying . 

3. Solve , play  and observe/receive a reward  

• OFULog [Abeille et al., AISTATS’21]:     

• OFULog-r [Abeille et al., AISTATS’21]:   

The multiplicative ’s comes from rather naive applications of self-concordant ( ) analyses [Bach, 2010]

̂θ t = argminθ∈ℝd [ℒt(θ) ≜
t−1

∑
s=1

ℓs(θ) + λt∥θ∥2
2] ℓs(θ) := − rs log μ(⟨xs, θ⟩) − (1 − rs)log(1 − μ(⟨xs, θ⟩))

Ct(δ) ⊆ 𝔹d(S) ℙ [∀t ≥ 1, θ⋆ ∈ Ct(δ)] ≥ 1 − δ

(xt, θt) = argmaxx∈𝒳t,θ∈Ct(δ)μ(⟨x, θ⟩) xt rt

Ct(δ) := {θ ∈ 𝔹d(S) : ∇ℒt(θ) − ∇ℒt( ̂θ t) H−1
t (θ)

≤ 𝒪 ( dS log t)}
Ct(δ) := {θ ∈ 𝔹d(S) : ℒt(θ) − ℒt( ̂θ t) ≤ 𝒪 ( dS3 log t)}( = Et(δ))

S | ··μ | ≤ ·μ

More details in OFULog(-r)



Logistic Bandits 101

• OFULog [Abeille et al., AISTATS’21]:   

 

• Gradient of the logistic loss: 

  

• If  is a good estimator, then the gradient at  should be near zero! 

• We can quantify “pointwise confidence” with the inverse of Hessian (covariance)  

• In order to obtain a confidence set, we require the local metric  that depends on the choice of  

• Relaxing  to the loss-based set  gives a convex confidence set, but is not tight in 

Ct(δ) := {θ ∈ 𝔹d(S) : ∇ℒt(θ) − ∇ℒt( ̂θ t) H−1
t (θ)

≤ 𝒪 ( dS log t)}
∇ℒt(θ⋆) =

t−1

∑
s=1

(μ(⟨xs, θ⋆⟩) − rs) xs

sum of martingale differences

+ 2λtθ⋆

̂θ t θ⋆

H(θ⋆) =
t−1

∑
s=1

·μ(⟨xs, θ⋆⟩)xsx⊤
s + λI

∥⋅∥H−1
t (θ) θ

Ct(δ) Et(δ) S

: Gradient-based Confidence set [Abeille et al., AISTATS’21]Ct(δ)
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Regret-to-Confidence-Set Conversion (R2CS)

• Let us consider norm-constrained, unregularized MLE: 

, where  

Theorem 1. [Lee et al., AISTATS’24]  We have , where 

 

 

Strict improvement over prior (loss-based & convex) confidence-set radius of 

̂θ t := argminθ∈𝔹d(S) [ℒt(θ) :=
t−1

∑
s=1

ℓs(θ)] ℓs(θ) := − rs log μ(⟨xs, θ⟩) − (1 − rs)log(1 − μ(⟨xs, θ⟩))

ℙ [∀t ≥ 1, θ⋆ ∈ Ct(δ)] ≥ 1 − δ

Ct(δ) := {θ ∈ 𝔹d(S) : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2},

βt(δ) := 10d log ( St
4d

+ e) + 2((e − 2) + S)log
1
δ

= 𝒪( (d + S)log t)

𝒪 ( dS3 log t)

Main Theorem - Improved Confidence Set for Logistic Loss



Regret-to-Confidence-Set Conversion (R2CS)

Decomposing the logistic loss with any online learning algorithm :

where  

•  is the online regret up to time , and   is the superiority of the online learning 
algorithm in terms of loss compared to  which is expected very small (independent to ) 
with high probability since  is the problem instance parameter. 

•  is the optimal parameter for the entire batch til time , while  is the online prediction.

θ̃s

ℒt(θ⋆) − ℒt( ̂θ t) =
t−1

∑
s=1

ℓs(θ⋆) − ℓs( ̂θ t) =
t−1

∑
s=1

(ℓs(θ̃s) − ℓs( ̂θ t))
RegO(t)

+
t−1

∑
s=1

(ℓs(θ⋆) − ℓs(θ̃s))

ζ(t)=ζ1(t)−ζ2(t)

ζ1(t) :=
t−1

∑
s=1

ξs⟨xs, θ̃s − θ⋆⟩, ζ2(t) :=
t−1

∑
s=1

KL(μs(⟨xs, θ⋆⟩), μs(⟨xs, θ̃s⟩))

RegO(t) t ζ(t)
θ⋆ t

θ⋆

̂θt t θ̃s

Proof Sketch of Theorem 1



Regret-to-Confidence-Set Conversion (R2CS)

1. Decomposing the logistic loss such that the  is expressed as a sum of 
, regret of any online learning algorithm of our choice, , a sum of 

martingales, and , a (negative) sum of KL-divergences. 

2. For , we utilize the state-of-the-art online regret of Foster et al., (COLT’18), 
which reduces the usual  to , without ever running the algorithm. 

3. For , we utilize a novel anytime variant of the Freedman’s concentration 
inequality [Freedman, 1975] for martingales. 

4. For , we utilize the Bregman geometrical interpretation of the KL-
divergence, along with self-concordant results.

βt(δ)2

RegO(t) ζ1(t)
−ζ2(t)

RegO(t)
dS d log S

ζ1(t)

−ζ2(t)

Proof Sketch of Theorem 1



Regret-to-Confidence-Set Conversion (R2CS)

1. Decomposing the logistic loss such that the  is expressed as a sum of , regret of any online 
learning algorithm of our choice, , a sum of martingales, and , a (negative) sum of KL-
divergences. 

Note that  for some martingale difference noise . 

Lemma 1 & 2. [Lee et al., AISTATS’24]  For the logistic loss  and any sequence of 
parameters  (e.g., “outputted” from some online algorithm), the following holds: 

 

βt(δ)2 RegO(t)
ζ1(t) −ζ2(t)

rs = μ(⟨xs, θ⋆⟩) + ξs ξs

ℓs
{θ̃s}

t

∑
s=1

ℓs(θ⋆) − ℓs( ̂θ t) ≤ RegO(t) + ζ1(t) − ζ2(t) .

Proof of Theorem 1

The proof utilizes second-
order Taylor expansion of  
with integral remainder! 

ℓs



Regret-to-Confidence-Set Conversion (R2CS)

2. For , we utilize the state-of-the-art online regret of Foster et al., (COLT’18), which reduces the usual 
 to , without ever running the algorithm. 

Theorem 3. [Foster et al., COLT'18]  There exists an (improper learning) algorithm for online 
logistic regression with the following regret: 

 

Note how we get  instead of !! Even better, we get this without ever running the 
algorithm, which in this case, is quite expensive! 

RegO(t)
dS d log S

RegO(t) ≤ 10d log ( St
4d

+ e) .

d log S dS

Proof of Theorem 1



Regret-to-Confidence-Set Conversion (R2CS)

3. For , we utilize a novel anytime variant of the Freedman’s concentration inequality [Freedman, 1975] for martingales. 

Lemma 3. [Lee et al., AISTATS’24]  Let  be a martingale difference sequence satisfying  

a.s., and let . Then for any  and any , the following holds: 

 

With this, we have the following: for any choice of  and , 

ζ1(t)

{Xs}t
s=1 max

s
|Xs | ≤ R

ℱs := σ(X1, ⋯, Xs) δ ∈ (0,1) η ∈ [0,1/R]

ℙ [∀t ≥ 1,
t

∑
s=1

Xs ≤ (e − 2)η
t

∑
s=1

𝔼[X2
s |ℱs−1] +

1
η

log
1
δ ] ≥ 1 − δ .

δ ∈ (0,1) η ∈ [0,
1

2S ]
ℙ [∀t ≥ 1, ζ1(t) ≤ (e − 2)η

t

∑
s=1

·μ(⟨xs, θ⋆⟩)⟨xs, θ⋆ − θ̃s⟩2+
1
η

log
1
δ ] ≥ 1 − δ

Proof of Theorem 1

The proof is based on 
Theorem 1 of Beygelzimer et 
al. (ICML’11) and the Ville’s 

inequality [Ville, 1939]



Regret-to-Confidence-Set Conversion (R2CS)

4. For , we utilize the Bregman geometrical interpretation of the KL-divergence, along with self-
concordant results. 

Observation. . 

Lemma 4. [Lee et al., AISTATS’24]  , where . 

Combining above with self-concordant analysis [Lemma 8 of Abeille et al., AISTATS'21], we have: 

−ζ2(t)

Dm(z1, z2) := m(z1) − m(z2) − ∇m(z2)⊺(z1 − z2) = ∫
z2

z1

m′ ′ (z)(z1 − z)dz

KL(μ(z1), μ(z1)) = Dm(z1, z2) m(z) := log(1 + ez)

−ζ2(t) ≤ −
1

2 + 2S

t

∑
s=1

·μ(⟨xs, θ⋆⟩)⟨xs, θ⋆ − θ̃s⟩2

Proof of Theorem 1



Regret-to-Confidence-Set Conversion (R2CS)

Combining everything, we have: with probability at least , for all  

 

where we choose  that satisfies .

1 − δ t ∈ [T],
t

∑
s=1

ℓs(θ⋆) − ℓs( ̂θ t)

≤ RegO(t) + ζ1(t) − ζ2(t)

≤ 10d log ( St
4d

+ e) + (e − 2)η
t

∑
s=1

·μ(⟨xs, θ⋆⟩)⟨xs, θ⋆ − θ̃s⟩2+
1
η

log
1
δ

−
1

2 + 2S

t

∑
s=1

·μ(⟨xs, θ⋆⟩)⟨xs, θ⋆ − θ̃s⟩2

≤ 10d log ( St
4d

+ e) + 2((e − 2) + S)log
1
δ

,

η =
1

2(e − 2) + 2S)
<

1
2S

−
1

2 + 2S
+

e − 2
2(e − 2) + 2S

< 0

Proof of Theorem 1



Related Work: Online-to-Something Conversions

Online-to-confidence-set: Start from some online learning algorithm  with regret 

, then bound LHS to obtain a quadratic-type confidence set on  that 

depends on the outputs of  whose radius scales with  [Abbasi-Yadkori et al., AISTATS’12; Jun et al., 
NeurIPS’17] 

Advantages of O2SC: “progress in constructing better algorithms for online prediction problems 
directly translates into tighter confidence sets” [Abbasi-Yadkori et al., AISTATS’12]; see Chapter 23.3 of 
Lattimore and Szepesvári (2020) 

BUT, what if the online learning has a trade-off between computational complexity and regret?? 

e.g., online logistic regression: good regret & bad computational complexity [Foster et al., COLT’18] or 
worse regret & good computational complexity [Jézéquel et al., COLT’20] 

Our algorithm does not run the online learning part!

𝒜
t

∑
s=1

ℓs(θs) − ℓs(θ⋆) ≤ B(t) θ⋆

𝒜 B(t)

Online Learning -> Concentration of Measure



Related Work: Online-to-Something Conversions

Recently, Lugosi & Neu (arXiv’23) introduced online-to-PAC conversion: 

“… the existence of an online learning algorithm with bounded regret in this game 
implies a bound on the generalization error of the statistical learning algorithm up to 
a martingale concentration term that is independent of the complexity of the 
statistical learning method.” 

=> very similar spirit, but the goal is different from ours.

Online-to-PAC Conversion
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Improved Regret of Logistic Bandits

• Note that our algorithm is of the same form with OFULog-r, except we’ve only changed the 

confidence set radius,  to , which we call OFULog+ 

Theorem 3. [Lee et al., AISTATS’24]  OFULog+ incurs the following regret bound w.p. at least : 

 

(Refer to our paper for the missing definitions)

𝒪 ( dS3 log t) 𝒪 ( (d + S)log t)

1 − δ

RegB(T) ≲ dS
T

κ⋆(T)

permanent term

+ min {d2S2κ𝒳(T), R𝒳(T)}
transient term

OFULog+



Improved Regret of Logistic Bandits

• OFULog [Abeille et al., AISTATS’21]. Non-convex confidence-set-based UCB algorithm 

 

• OFULog-r [Abeille et al., AISTATS’21]. Convex relaxation of OFULog 

 

• ada-OFU-ECOLog [Faury et al., AISTATS’22]. Online Newton step (ONS) [Hazan et al., 2007]-based algorithm 

 

• OFULog+ [Lee et al., AISTATS’24]. Tight loss-based confidence set 

dS
3
2

T
κ⋆(T )

+ min {d2S3κ𝒳(T ), R𝒳(T )}

dS
5
2

T
κ⋆(T )

+ min {d2S4κ𝒳(T ), R𝒳(T )}

dS
T

κ⋆(T )
+ d2S6κ(T )

dS
T

κ⋆(T )
+ min {d2S2κ𝒳(T ), R𝒳(T )}

OFULog+ is the state-of-the-art, taking  into accountS



Improved Regret of Logistic Bandits

• One may wonder, does shaving off dependencies on  really help in practice? 

• Synthetic experiments show that this is indeed beneficial, by a large margin!! 
• (In fact, we believe that the current analysis can be made tighter, which may explain the large margin 

shown in the experiments)

S

Experiments

S = 2, κ = 9 S = 10, κ = 22028
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Conclusion and Future Works

1. Regret-to-confidence-set conversion (R2CS): a new framework that converts an achievable 
online learning regret guarantee to a confidence set, without ever running the online algorithm 
explicitly. 

2. We apply R2CS to obtain tightest confidence set for logistic losses, which then leads to the 
state-of-the-art regret guarantee of logistic bandits. 

3. We empirically show that our new confidence-set based UCB algorithm attains the best 
performance. 

Omitted from this presentation: 

• Guarantees for multinomial logistic loss/bandits 

• Extensive discussions on other related work 

• and more

Conclusion



Conclusion and Future Works

1. Extend our R2CS framework to various settings such as sparse logistic bandits [Oh et 

al., ICML’21],  generalized linear bandits [Filippi et al., NIPS’10], norm-agnostic scenario [Gales et al., 

AISTATS’22], and multinomial logistic MDPs [Hwang & Oh, AAAI’23]. 

2. As logistic bandits can be seen as utility-based dueling bandits with top-1 feedback 
(Bradley-Terry model), apply our analysis to make the recent guarantees on RLHF [Wu 

& Sun, ICLR’24] tighter? 

3. Any relation to Thompson sampling [Abeille & Lazaric, 2017]? 

4. Any relation to universal inference [Wasserman et al., 2020] and sequential likelihod ratio 
confidence set [Emmenegger et al., NeurIPS’23]? 

5. Any relation to Decision Estimation Coefficients [Foster et al., arXiv’21]? 

6. …etc!!

Future Works



Thank you for your attention!

(arXiv will be updated with camera-ready ver soon)
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