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Most of the optimization problems in ML/DL can be expressed as the
following formulation:

1 n .
min F (w) £ min — z FOw)
w w n i=1

, where summands are the individual loss contributed by each data point or
minibatch.
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 This optimization problem is usually solved via stochastic version of
gradient descent method, called the stochastic gradient descent (SGD).

Wiyt = wy — IV fi(we) = wy — nVF (wy) + nU;

(VW) = (/12 Bien, VP W), Us(w) = VF(W) — Vfi(w) )

« Computationally efficient
« The noises of SGD contribute towards better generalization capability of
the resulting model.

«  Empirical studies: [Keskar et al., ICLR'16] [Smith et al., ICML20] ...etc.
« Theoretical studies: [Pesme et al., NeurlPS'21] [Damian et al., NeurlPS'21] ...etc.
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Wiyt = we — V7 fre(we) = we — nVF (wy) + nU;

« Depending on the empirical observation and/or modeling assumption,
one can either choose to model the stochastic gradient noise(SGN) U; as
normal or heavy-tailed.

 Precisely speaking, this distinction comes from whether that the second

moment of U, is finite or infinite.
« Heuristically, with big enough batch size, we can invoke the (generalized)

central limit theorem, depending on the assumption.
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« The importance of such assumption is highlighted when we analyze SGD
via its counterpart SDE.
- Under appropriate limit (vanishing learning rate, big enough batch size), we
can analyze the SGD in the continuous regime.
« Close connection with the stochastic gradient Langevin dynamics. [Welling &
Teh, ICML'11] [Mandt et al., JMLR 2017]

« The stochastic process driving that SDE thus depends on the assumption!
- SGD as Brownian-driven SDE: [Li et al., JMLR 2019] [Li et al., NeurlPS'21]
« SGD as Levy-driven SDE: [Simsekli et al., ICML'19] [Zhou et al., NeurlPS'20]
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« The behaviors of these SDEs are completely different (see [Simsekli et al.,
ICML'19] and references therein for more details)
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« Therefore, by empirically measuring the tail property of SGN, we can

expect the characteristic of training process.

« This was first proposed in [Simsekli et al., ICML19]:
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Figure 7. The iteration-wise behavior of of « for the FCN.
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 Preliminary statistical tests [Panigrahi et al., NeurlPSW'19] showed that the
heavy-tailedness depends heavily on the hyperparameters

Gaussianity testing on random projections.
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* A more sophisticated statistical analysis [Wang et al., ICLR'22] showed that
actually, the SGN often displays the behavior of lognormal distribution

Pareto, o = 2 Pareto, « =5  Pareto, o« = 10 Lognormal Normal

xxxxxxxx

Figure A.7: Ablation Study, Corrupted FMNIST & LeNet: At the beginning
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- Despite the abundance of literature in analyzing stochastic optimization,
not much work has been done that analyzes stochastic training process

on the Graph Neural Network (GNN).

- Therefore, as the first step, we would like to tackle the following question:

What are the statistical properties of SGNs when we
perform stochastic training of GNNs?
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« Graph Neural Network (GNN) transforms node feature from the original
graph. We can use transformed feature to various machine learning tasks.

 Several aggregation schemes have proposed, including the famous two
methods:

GCN: R, = RELU ( Z

UEN(v)

o + h,
Ny T

GIN: )= MLPy ((1+€) - MLP;(hy) + Z MLP;(hy) )

UEN (V)
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«  We used the semi-supervised node classification setting: Given partial
labeled vertices, we should predict the label of the left unlabeled vertices
after training.

Labeled

——————— GNN
evaluation

Unlabeled
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« There are two methods of sampling nodes: (1) node batching and (2)
neighborhood sampling.

« We consider uniformly random node batching without neighborhood
sampling.
This is to isolate such additional effect

(1) Randomly select N (2-1) Randomly select one (2-2) Select neighbors
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At prescribed epochs, we measured the norms of the SGNs, which are then

formed from 1000 random batches.
«  We consider three epochs: beginning, middle, and end (see the paper for more

details)
« We visualize the SGN norm distribution to some predefined distribution (e.g.,
normal, log normal, Pareto) using QQ-plots. [Wang et al., ICLR'22]

« We use the Cora dataset. Chi-squared
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 Normal and Pareto(Power law) distributions do not fit well, while Log Normal
distribution has good fit. & This is in line with the observations for vision tasks

[Wang et al., ICLR’22].

e Chi-squared distribution does not fit well.
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Similar as GCN i.e. normal and Pareto provide poor fits, while lognormal provides
somewhat good fit.

Chi-squared distribution does fit well.
-» Chi-squared fitting distinguish the GCN and GIN.
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Takeaways/Future Works

* We provide a preliminary statistical analysis of SGN of GNNs, following [Wang et al.,
ICLR’22].

e The statistical behaviors of SGD for GNNs are similar with that for the common vision
tasks.

* According to chi-squared distribution "test”, tail properties of GCN and GIN differ.
* Is this reliable conclusion? Their behaviors are the same for normal, Pareto (in that those
two do not fit well), and lognormal (in that this provides good fit)

 The most interesting future direction would be to see whether specific graph
properties can be incorporated into the dynamics of SGD (e.g. degree distribution,

graph topology...etc)
* This has been recently done for distributed learning setting [Gurbuzbalaban et al., arXiv'22]
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