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Most of the optimization problems in ML/DL can be expressed as the 
following formulation: 

min
!
𝐹 𝑤 ≜ min

!

1
𝑛 )"#$

%
𝑓 " 𝑤

, where summands are the individual loss contributed by each data point or 
minibatch.  
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• This optimization problem is usually solved via stochastic version of 
gradient descent method, called the stochastic gradient descent (SGD).

• Computationally efficient
• The noises of SGD contribute towards better generalization capability of 

the resulting model.
• Empirical studies: [Keskar et al., ICLR’16] [Smith et al., ICML’20] …etc.
• Theoretical studies: [Pesme et al., NeurIPS’21] [Damian et al., NeurIPS’21] …etc.

𝑤&'$ = 𝑤& − 𝜂𝛻 /𝑓( 𝑤& = 𝑤& − 𝜂𝛻𝐹 𝑤& + 𝜂𝑈&

( 𝛻 /𝑓( 𝑤 = 1/ 𝛺( ∑"∈*! 𝛻𝑓
" 𝑤  , 𝑈& 𝑤 = 𝛻𝐹 𝑤 − 𝛻 /𝑓( 𝑤  )
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• Depending on the empirical observation and/or modeling assumption, 
one can either choose to model the stochastic gradient noise(SGN) 𝑈& as 
normal or heavy-tailed.

• Precisely speaking, this distinction comes from whether that the second 
moment of 𝑈& is finite or infinite.
• Heuristically, with big enough batch size, we can invoke the (generalized) 

central limit theorem, depending on the assumption.

𝑤!"# = 𝑤! − 𝜂𝛻 &𝑓$ 𝑤! = 𝑤! − 𝜂𝛻𝐹 𝑤! + 𝜂𝑈!



7

1.Introduction

Optimization & Statistical Inference Lab

• The importance of such assumption is highlighted when we analyze SGD 
via its counterpart SDE.
• Under appropriate limit (vanishing learning rate, big enough batch size), we 

can analyze the SGD in the continuous regime.
• Close connection with the stochastic gradient Langevin dynamics. [Welling & 

Teh, ICML’11] [Mandt et al., JMLR 2017]

• The stochastic process driving that SDE thus depends on the assumption!
• SGD as Brownian-driven SDE: [Li et al., JMLR 2019] [Li et al., NeurIPS’21]
• SGD as Levy-driven SDE: [Simsekli et al., ICML’19] [Zhou et al., NeurIPS’20]
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• The behaviors of these SDEs are completely different (see [Simsekli et al., 
ICML’19] and references therein for more details)
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• Therefore, by empirically measuring the tail property of SGN, we can 
expect the characteristic of training process.

• This was first proposed in [Simsekli et al., ICML’19]:
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• Preliminary statistical tests [Panigrahi et al., NeurIPSW’19] showed that the 
heavy-tailedness depends heavily on the hyperparameters

• A more sophisticated statistical analysis [Wang et al., ICLR’22] showed that 
actually, the SGN often displays the behavior of lognormal distribution
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• Despite the abundance of literature in analyzing stochastic optimization, 
not much work has been done that analyzes stochastic training process 
on the Graph Neural Network (GNN).

• Therefore, as the first step, we would like to tackle the following question:

What are the statistical properties of SGNs when we 
perform stochastic training of GNNs?
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• Graph Neural Network (GNN) transforms node feature from the original 
graph. We can use transformed feature to various machine learning tasks.

• Several aggregation schemes have proposed, including the famous two 
methods: 

ℎ+, = 𝑀𝐿𝑃-	( 1 + 𝜖 < 𝑀𝐿𝑃. ℎ+ + )
/∈0(+)

𝑀𝐿𝑃.(ℎ/)	 )GIN: 

ℎ+, = 𝑅𝐸𝐿𝑈	( )
/∈0 +

𝑊
ℎ/

|𝑁 𝑣 | + ℎ+	)GCN: 
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• We used the semi-supervised node classification setting: Given partial 
labeled vertices, we should predict the label of the left unlabeled vertices 
after training.
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• There are two methods of sampling nodes: (1) node batching and (2) 
neighborhood sampling.

• We consider uniformly random node batching without neighborhood 
sampling.
• This is to isolate such additional effect

(2-1) Randomly select one (2-2) Select neighbors(1) Randomly select N
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• At prescribed epochs, we measured the norms of the SGNs, which are then 

formed from 1000 random batches.

• We consider three epochs: beginning, middle, and end (see the paper for more 

details)

• We visualize the SGN norm distribution to some predefined distribution (e.g., 

normal, log normal, Pareto) using QQ-plots. [Wang et al., ICLR’22]

• We use the Cora dataset.
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그림 1 (GCN)
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• Normal and Pareto(Power law) distributions do not fit well, while Log Normal 
distribution has good fit. → This is in line with the observations for vision tasks 
[Wang et al., ICLR’22].

• Chi-squared distribution does not fit well.
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그림 2 (GIN)
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• Similar as GCN i.e. normal and Pareto provide poor fits, while lognormal provides 
somewhat good fit.

Chi-squared distribution does fit well. 
→ Chi-squared fitting distinguish the GCN and GIN.



Takeaways/Future Works

• We provide a preliminary statistical analysis of SGN of GNNs, following [Wang et al., 
ICLR’22].

• The statistical behaviors of SGD for GNNs are similar with that for the common vision 
tasks.

• According to chi-squared distribution ”test”, tail properties of GCN and GIN differ.
• Is this reliable conclusion? Their behaviors are the same for normal, Pareto (in that those 

two do not fit well), and lognormal (in that this provides good fit)

• The most interesting future direction would be to see whether specific graph 
properties can be incorporated into the dynamics of SGD (e.g. degree distribution, 
graph topology…etc)
• This has been recently done for distributed learning setting [Gurbuzbalaban et al., arXiv’22]
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