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▶ Softmax parametrization is highly ubiquitous when one wishes to
estimate discrete probability distribution.

▶ Due to its simplicity, it is employed in a wide range of applications
such as multinomial logistic Markov Decision Processes [HO23], deep
learning [S+21], and human decision-making [RL15].

▶ In this work, we compare three distinct choices of softmax-type
parametrization of a transition probability distribution.
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Problem Setup

▶ Given a finite set S with |S| = N , let P ∈ ∆(S) where ∆(S) denote the
set of all transition probability distributions over S.

▶ For example, if S = {s1, · · · , sN}, P (· | si) is the probability
distribution over S given that the current state is si.

▶ The transition probability distribution P can be canonically identified
as an element of MatN×N (R).

▶ We analyze three softmax-type parametrizations of P that exploit
softmax : RN → R to generate probability distributions P (· | s) for
each s ∈ S.
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Softmax-type parametrizations

In this work, we provide theoretical and empirical analyses on three popular
ways to estimate P , which are summarized below.

1. p(s′ | s) = softmax({φ(s)⊺θ⋆(s′)}s′), where φ : S → Rd is known and
θ⋆ : S → Rd is unknown.

2. p(s′ | s) = softmax({φ(s, s′)⊺θ⋆}s′), where φ : S × S → Rd is known
and θ⋆ ∈ Rd is unknown.

3. p(s′ | s) = softmax({φ(s, s′)⊺θ⋆}s′), where φ : S × S → Rd is unknown
and θ⋆ ∈ Rd is also unknown.

In any case, we are given a trajectory (X1, · · · , XT ) of length T , where

X1 ∼ µ, Xt+1 ∼ p(· | Xt), t = 1, 2, · · · , T − 1.

Here, µ is some unknown probability distribution over S.
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We consider the performance of two MLE’s:

▶ Non-parametric model:

p̂nonparam(s′ | s) = #[s → s′]

#[s]
, ∀s, s′ ∈ S.

This is known to be minimax over ergodic Markov chains [WK21].

▶ Parametric model:

p̂ := pθ̂T , θ̂T = argmax
θ∈Rd

T∑
t=1

{
log pθ(Xt+1 | Xt)

}
.

One reasonable expectation is that when d is small, the latter MLE
may be able to break the barrier of the minimax rate.
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We say that the parametrization scheme is fully expressive if every
Markov chain can be expressed as that scheme.

Theorem 2.1 (Informal Version)

The parametrizations #1, #2, #3 are fully expressive if there are no
irrelevent or redundant features.

The formal statement can be organized as

Param #1 Param #2, #3
is fully expressive when: are fully expressive when:

the linear equation LΦx = y
has solution for ∀y ∈ Rd

the linear equation LΨx = y
has solution for ∀y ∈ Rd

where we define

Φ =

φ(s1)
⊺

...
φ(sN )⊺

 ∈ MatN,d(R), Ψ =

 Φ(s1)
...

Φ(sN )

 ∈ MatN2,d(R)

for parametrization #1 and {#2, #3}, respectively. Here, for
parametrizations #2 and #3, Φ(s) is defined by

Φ(s) = [φ(s, s1)
⊺ · · ·φ(s, sN )⊺]⊺ ∈ MatN,d(R).
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▶ An accurate estimate of θ⋆ yields an accurate estimate of pθ⋆ .

▶ An inaccurate estimate θ̂ of θ⋆ might still yield a good estimate of pθ⋆ ,
due to the translation invariance of softmax. [Non-identifiability]

Theorem 2.2 (Accurate θ ⇒ Accurate pθ; Parametrization #1)

Assume that the true transition probability distribution has representation
pθ⋆(s

′|s) = softmax{(φ(s)⊺θ⋆(s′)}s′), and consider the parametrization
pθ(s

′|s) = softmax({φ(s)⊺θ(s′)}s′). Then, one has that

∥pθ − pθ⋆∥∞,1 := max
s∈S

dTV (pθ(·|s), pθ⋆(·|s)) ≲
N

2
∥θ − θ⋆∥∞,2.

Theorem 2.3 (Accurate θ ⇒ Accurate pθ; Parametrization #2)

Consider the parametrization pθ(s
′|s) = softmax({φ(s, s′)⊺θ}s′), where

φ : S × S → Rd is known. Assume that the true transition probability
distribution has representation pθ⋆(s

′|s) = softmax(φ(s, s′)⊺θ⋆). Then, one
has that

∥pθ − pθ⋆∥∞,1 ≲
1

2
∥θ − θ⋆∥2.
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Proposition 1 (Non-identifiability, Parametrization #1)

If 1Rd ∈ RanLΦ, then for any ε > 0, there exists a θ̃⋆ : S → Rd such that
pθ⋆ = pθ̃⋆ , yet ∥θ⋆ − θ̃⋆∥∞,2 ⩾ ε.

Proposition 2 (Non-identiability, Parametrization #2 & #3)

If 1 = 1Rd ∈ RanLΨ, then for any given ε > 0, there exists some θ̃⋆ such
that pθ⋆ = pθ̃⋆ , yet ∥θ⋆ − θ̃⋆∥2 ⩾ ε.
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Setup

▶ We consider a Markov chain M = (S, µ, P ) with N = 10 states and
(randomly generated) fixed µ and P .

▶ We consider the non-parametric estimator and three distinct
parametric estimators.

▶ For each parametric estimators, we perform the maximum likelihood
estimator w.r.t. θ: precisely speaking,

maximize
θ∈Rd

T∑
t=1

log pθ(Xt+1 | Xt)

via gradient ascent on θ with the learning rate of 0.003.
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Experiment #1

We vary the number of data points Ndata over a set of values:
Ndata ∈ {10, 30, 100, 300, 1000, 3000, 10000, 30000}, and observe the decay
rate of the metric ∥pθ − P∥∞,1.

▶ For Ndata ⩽ 103, we observe the slope of -1/2 on the log-log plot,

indicating a decay rate of O(N
−1/2
data ).

▶ As Ndata increases, the absolute value of the slope for parametric
estimators decreases, indicating improved performance compared to
the non-parametric estimator.
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Experiment #2

In this experiment, we observe the decay rate of the discrepancy metric
∥pθ − P∥∞,1 over the number of epochs.

Figure: (Left) training curve for Ndata = 100, (Right) training curve for
Ndata = 1000

▶ In both figures, the first and third estimators demonstrate superior
performance compared to the second estimator, while the second
estimator exhibits greater robustness.
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Future work

▶ Theoretically exploring the decay rate of this metric with respect to
Ndata?

▶ Understand the observed decay in the absolute slope of the first figure
as Ndata increases?
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