On the Estimation of Linear Softmax Parametrized Markov Chains [KCC 2024 Oral Session]

Kunwoo Na¹²³, Junghyun Lee³, Seyoung Yun³

 1 Department of Chemistry Education, SNU 2 Department of Mathematical Sciences, SNU ²Kim Jaechul Graduate School of AI, KAIST

June 27, 2024

1

2

[Introduction](#page-2-0)

[Theoretical Analyses](#page-7-0) [Expressivity results](#page-8-0) [Non-identifiability results](#page-9-0)

[Experiments](#page-11-0)

[Introduction](#page-2-0)

[Theoretical Analyses](#page-7-0) [Expressivity results](#page-8-0) [Non-identifiability results](#page-9-0)

[Experiments](#page-11-0)

 $\begin{array}{ccc} \textbf{Introduction} & & & & \textbf{if} & \textbf{if}$ $\begin{array}{ccc} \textbf{Introduction} & & & & \textbf{if} & \textbf{if}$ $\begin{array}{ccc} \textbf{Introduction} & & & & \textbf{if} & \textbf{if}$

- ▶ Softmax parametrization is highly ubiquitous when one wishes to estimate discrete probability distribution.
- ▶ Due to its simplicity, it is employed in a wide range of applications such as multinomial logistic Markov Decision Processes [\[HO23\]](#page-16-0), deep learning $[S^+21]$ $[S^+21]$, and human decision-making $[RL15]$.
- ▶ In this work, we compare three distinct choices of softmax-type parametrization of a transition probability distribution.

Problem Setup

- ► Given a finite set S with $|S| = N$, let $P \in \Delta(\mathcal{S})$ where $\Delta(\mathcal{S})$ denote the set of all transition probability distributions over S .
- ▶ For example, if $S = \{s_1, \dots, s_N\}, P(\cdot | s_i)$ is the probability distribution over S given that the current state is s_i .
- \blacktriangleright The transition probability distribution P can be canonically identified as an element of $\text{Mat}_{N\times N}(\mathbb{R})$.
- \triangleright We analyze three softmax-type parametrizations of P that exploit softmax : $\mathbb{R}^N \to \mathbb{R}$ to generate probability distributions $P(\cdot | s)$ for each $s \in \mathcal{S}$.

$\begin{array}{cccccccccccccc} \textbf{Introduction} & & & & & & & & & & & \rightarrow & \leftarrow & \rightarrow & \leftarrow & \mathbb{R} & \rightarrow & \leftarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{S} & \rightarrow & \mathbb{S$ $\begin{array}{cccccccccccccc} \textbf{Introduction} & & & & & & & & & & & \rightarrow & \leftarrow & \rightarrow & \leftarrow & \mathbb{R} & \rightarrow & \leftarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{S} & \rightarrow & \mathbb{S$ $\begin{array}{cccccccccccccc} \textbf{Introduction} & & & & & & & & & & & \rightarrow & \leftarrow & \rightarrow & \leftarrow & \mathbb{R} & \rightarrow & \leftarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{R} & \rightarrow & \mathbb{S} & \rightarrow & \mathbb{S$

Softmax-type parametrizations

In this work, we provide theoretical and empirical analyses on three popular ways to estimate P, which are summarized below.

- 1. $p(s' | s) = \text{softmax}(\{\varphi(s)^\mathsf{T} \theta_\star(s')\}_{s'})$, where $\varphi : \mathcal{S} \to \mathbb{R}^d$ is known and $\theta_{\star}: \mathcal{S} \to \mathbb{R}^d$ is unknown.
- 2. $p(s' \mid s) = \text{softmax}(\{\varphi(s, s')^\mathsf{T} \theta_\star\}_{s'})$, where $\varphi : \mathcal{S} \times \mathcal{S} \to \mathbb{R}^d$ is known and $\theta_{\star} \in \mathbb{R}^d$ is unknown.
- 3. $p(s' | s) = \text{softmax}(\{\varphi(s, s')^\mathsf{T} \theta_\star\}_{s'})$, where $\varphi : \mathcal{S} \times \mathcal{S} \to \mathbb{R}^d$ is unknown and $\theta_{\star} \in \mathbb{R}^d$ is also unknown.

In any case, we are given a trajectory (X_1, \dots, X_T) of length T, where

$$
X_1 \sim \mu
$$
, $X_{t+1} \sim p(\cdot | X_t)$, $t = 1, 2, \cdots, T-1$.

Here, μ is some unknown probability distribution over \mathcal{S} .

[Introduction](#page-2-0) 6

We consider the performance of two MLE's:

▶ Non-parametric model:

$$
\widehat{p}_{\text{nonparam}}(s' \mid s) = \frac{\#[s \to s']}{\#[s]}, \quad \forall s, s' \in \mathcal{S}.
$$

This is known to be minimax over ergodic Markov chains [\[WK21\]](#page-16-3). ▶ Parametric model:

$$
\widehat{p} := p_{\widehat{\theta}_T}, \quad \widehat{\theta}_T = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmax}} \ \sum_{t=1}^T \bigg\{ \log p_{\theta}(X_{t+1} \mid X_t) \bigg\}.
$$

One reasonable expectation is that when d is small, the latter MLE may be able to break the barrier of the minimax rate.

[Introduction](#page-2-0) 7

[Theoretical Analyses](#page-7-0)

[Expressivity results](#page-8-0) [Non-identifiability results](#page-9-0)

[Experiments](#page-11-0)

[Theoretical Analyses](#page-7-0) $\overline{8}$

We say that the parametrization scheme is **fully expressive** if every Markov chain can be expressed as that scheme.

Theorem 2.1 (Informal Version)

The **parametrizations** $\#1, \#2, \#3$ are fully expressive if there are no irrelevent or redundant features.

The formal statement can be organized as

where we define

$$
\Phi = \begin{bmatrix} \varphi(s_1)^{\intercal} \\ \vdots \\ \varphi(s_N)^{\intercal} \end{bmatrix} \in \text{Mat}_{N,d}(\mathbb{R}), \quad \Psi = \begin{bmatrix} \Phi(s_1) \\ \vdots \\ \hline \Phi(s_N) \end{bmatrix} \in \text{Mat}_{N^2,d}(\mathbb{R})
$$

for parametrization $#1$ and $\{#2, #3\}$, respectively. Here, for parametrizations $\#2$ and $\#3$, $\Phi(s)$ is defined by

 $\Phi(s) = [\varphi(s, s_1)^\mathsf{T} \cdots \varphi(s, s_N)^\mathsf{T}]^\mathsf{T} \in \text{Mat}_{N,d}(\mathbb{R}).$

[Theoretical Analyses](#page-7-0) $\begin{array}{ccc} & & & & \rightarrow & \leftarrow & \rightarrow & \leftarrow & \mathbb{R} \rightarrow & \mathbb$

- \blacktriangleright An accurate estimate of θ_\star yields an accurate estimate of $p_{\theta_\star}.$
- An inaccurate estimate $\hat{\theta}$ of θ_{\star} might still yield a good estimate of $p_{\theta_{\star}}$, due to the translation invariance of softmax. [Non-identifiability]

Theorem 2.2 (Accurate $\theta \Rightarrow$ Accurate p_{θ} ; Parametrization #1)

Assume that the true transition probability distribution has representation $p_{\theta_{\star}}(s'|s) = \text{softmax}\{(\varphi(s)^{\mathsf{T}}\theta_{\star}(s')\}_{s'})$, and consider the parametrization $p_{\theta}(s'|s) = \text{softmax}(\{\varphi(s)^{\dagger} \theta(s')\}_{s'})$. Then, one has that

$$
||p_{\theta}-p_{\theta_{\star}}||_{\infty,1} := \max_{s \in \mathcal{S}} d_{\text{TV}}(p_{\theta}(\cdot|s), p_{\theta_{\star}}(\cdot|s)) \lesssim \frac{N}{2} ||\theta-\theta_{\star}||_{\infty,2}.
$$

Theorem 2.3 (Accurate $\theta \Rightarrow$ Accurate p_{θ} ; Parametrization #2) Consider the parametrization $p_{\theta}(s'|s) = \text{softmax}(\{\varphi(s, s')^{\mathsf{T}}\theta\}_{s'})$, where $\varphi : \mathcal{S} \times \mathcal{S} \to \mathbb{R}^d$ is known. Assume that the true transition probability distribution has representation $p_{\theta_{\star}}(s'|s) = \text{softmax}(\varphi(s, s')^{\dagger} \theta_{\star})$. Then, one has that

$$
||p_{\theta}-p_{\theta_{\star}}||_{\infty,1}\lesssim \frac{1}{2}||\theta-\theta_{\star}||_2.
$$

[Theoretical Analyses](#page-7-0) and the set of the set of $\{ \Box \rightarrow \Diamond \Box \}$ and $\{ \Box \}$ and

Proposition 1 (Non-identifiability, Parametrization $\#1$) If $\mathbf{1}_{\mathbb{R}^d} \in \text{Ran } L_{\Phi}$, then for any $\varepsilon > 0$, there exists a $\tilde{\theta}_\star : \mathcal{S} \to \mathbb{R}^d$ such that $p_{\theta_{\star}} = p_{\tilde{\theta}_{\star}}, \text{ yet } ||\theta_{\star} - \tilde{\theta}_{\star}||_{\infty,2} \geqslant \varepsilon.$

Proposition 2 (Non-identiability, Parametrization $#2 \& #3$)

If $\mathbf{1} = \mathbf{1}_{\mathbb{R}^d} \in \text{Ran } L_\Psi$, then for any given $\varepsilon > 0$, there exists some $\tilde{\theta}_*$ such that $p_{\theta_{\star}} = p_{\tilde{\theta}_{\star}}$, yet $\|\theta_{\star} - \tilde{\theta}_{\star}\|_2 \geqslant \varepsilon$.

[Theoretical Analyses](#page-7-0) $\overline{11}$ $\overline{11}$ $\overline{11}$ and $\overline{12}$ and $\overline{13}$ and $\overline{14}$ and $\overline{11}$ and $\overline{11}$

[Theoretical Analyses](#page-7-0) [Expressivity results](#page-8-0) [Non-identifiability results](#page-9-0)

[Experiments](#page-11-0)

[Experiments](#page-11-0) $\overline{12}$ $\overline{12}$ $\overline{12}$ and $\overline{12}$ and $\overline{12}$ and $\overline{12}$ and $\overline{12}$ and $\overline{12}$

Setup

- \blacktriangleright We consider a Markov chain $\mathbb{M} = (\mathcal{S}, \mu, P)$ with $N = 10$ states and (randomly generated) fixed μ and P .
- ▶ We consider the non-parametric estimator and three distinct parametric estimators.
- ▶ For each parametric estimators, we perform the maximum likelihood estimator w.r.t. θ : precisely speaking,

$$
\underset{\theta \in \mathbb{R}^d}{\text{maximize}} \quad \sum_{t=1}^T \log p_\theta(X_{t+1} \mid X_t)
$$

via gradient ascent on θ with the learning rate of 0.003.

[Experiments](#page-11-0) $\overline{13}$ $\overline{13}$ $\overline{13}$

Experiment $#1$

We vary the number of data points N_{data} over a set of values: $N_{\text{data}} \in \{10, 30, 100, 300, 1000, 3000, 10000, 30000\}$, and observe the decay rate of the metric $||p_{\theta} - P||_{\infty,1}$.

- \blacktriangleright For $N_{\text{data}} \leq 10^3$, we observe the slope of -1/2 on the log-log plot, indicating a decay rate of $\mathcal{O}(N_{\text{data}}^{-1/2})$.
- \triangleright As N_{data} increases, the absolute value of the slope for parametric estimators decreases, indicating improved performance compared to the non-parametric estimator. **[Experiments](#page-11-0)** the non-parametric estimator.

Experiment $#2$

In this experiment, we observe the decay rate of the discrepancy metric $||p_{\theta} - P||_{\infty,1}$ over the number of epochs.

Figure: (Left) training curve for $N_{data} = 100$, (Right) training curve for $N_{\text{data}} = 1000$

▶ In both figures, the first and third estimators demonstrate superior performance compared to the second estimator, while the second estimator exhibits greater robustness.

[Experiments](#page-11-0) [1](#page-16-4)5

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$

Future work

- ▶ Theoretically exploring the decay rate of this metric with respect to N_{data} ?
- \triangleright Understand the observed decay in the absolute slope of the first figure as N_{data} increases?

Bibliography I

- [HO23] Taehyun Hwang and Min-hwan Oh. Model-Based Reinforcement Learning with Multinomial Logistic Function Approximation. In AAAI, 2023.
- [RL15] Paul Reverdy and Naomi Ehrich Leonard. Parameter estimation in softmax decision-making models with linear objective functions. IEEE Transactions on Automation Science and Engineering, 13(1):54–67, 2015.
- [S⁺21] M. Seddik et al. The Unexpected Deterministic and Universal Behavior of Large Softmax Classifiers. In AISTATS, 2021.
- [WK21] Geoffrey Wolfer and Aryeh Kontorovich. Statistical estimation of ergodic Markov chain kernel over discrete state space. Bernoulli, $27(1):532 - 553, 2021.$

[Experiments](#page-16-4) $\overline{17}$ $\overline{17}$ $\overline{17}$