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Reinforcement Learning

Learning optimal sequential behaviour / control from interacting with the environment

Unknown state dynamics and re-

ward function

1. Best policy identification – sample complexity (e.g., [Azar et al., 2013])

2. Online learning – regret (e.g., [Jaksch et al., 2010])
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Motivation

• Tabular MDPs (S states, A actions, p(·|, s, a), r(s, a)) are not (really) learnable – sample

complexity always scales as SA.

• RL algorithms need to learn and exploit as much as possible any underlying structure.

• Our considered setting: the rich observation MDP where

- the decision maker has access to high-dimensional contexts;

- the dynamics depend on unobserved low-dimensional latent states only;

- the mapping between contexts and latent states is unknown.

[Jedra et al., 2022]: (with some regularity assumptions) complete characterization of clustering

(and reward-free RL) in block MDPs

Empirically, how well does the clustering algorithm of [Jedra et al., 2022] work?
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1. Block MDPs



Contexts, Latent States, and Transition Dynamics

A Block MDP [Du et al., 2019] is defined by Φ = (X ,S,A, p, q, f)

- X is the observable context space with |X | = n

- S is the latent state space with |S| = S

- A is the action space with |A| = A

- p is the transition kernel of latent dynamics: p(s′|s, a)

- q denote the emission probabilities: q(x|s) (prob. of x if the new latent state is s)

- f is the decoding function: f(x) is the cluster or latent state of context x and satisfies

f(x) = s ⇐⇒ q(x|s) > 0.

To make sure that the clusters do not overlap, we make the following assumption:

Assumption 0 ∀s 6= s′, q(·|s) ∩ q(·|s′) = ∅, which implies that

X =
⋃̇

s∈S
f−1(s), f−1(s) := {x ∈ X : f(x) = s}.

Φ = (p, q, f) is unknown to the learner.
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Example Trajectories of Block MDPs

Model vs Observations
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The Data

Observations. T trajectories of length H,
{

(xh, ah)h∈[H],t∈[T ]

}
, obtained via policy-induced

data collection with the uniform behavior(logging) policy ρ ∼ U(A) (no generative model!):

(h = 1) (h = 2) . . . (h = H)

(t = 1) (x
(1)
1 , a

(1)
1 ), (x

(1)
2 , a

(1)
2 ), . . . , (x

(1)
H , a

(1)
H )

(t = 2) (x
(2)
1 , a

(2)
1 ), (x

(2)
2 , a

(2)
2 ), . . . , (x

(2)
H , a

(2)
H )

...

(t = T ) (x
(T )
1 , a

(T )
1 ), (x

(T )
2 , a

(T )
2 ), . . . , (x

(T )
H , a

(T )
H )

The data is Markovian across [H] and independent across [T ].

Remark Use of fixed behavior policy is common to derive theoretical guarantees

[Azizzadenesheli et al., 2016b, Azizzadenesheli et al., 2016a], and to accommodate practi-

cal offline RL applications [Levine et al., 2020]. [Xiao et al., 2022] showed that for passive

data collection in batch RL, the uniform behavior policy is the best.

From this data, can we identify f in an optimal and computationally efficient manner?
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Clustering Error

Clustering algorithms:(
x

(t)
h , a

(t)
h

)
h∈[H],t∈[T ]︸ ︷︷ ︸

Observations

−→ A︸︷︷︸
Clustering algorithm

−→ f̂︸︷︷︸
Decoding function

Clustering error: the number of misclassified contexts

E(f̂) = min
σ

⋃
s∈S

f̂−1(σ(s))\f−1(s)

|E(f̂)| = min
σ

∣∣∣∣∣⋃
s∈S

f̂−1(σ(s))\f−1(s)

∣∣∣∣∣
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2. Theoretical Results

[Jedra et al., 2022]



Fundamental Lower Bound on Total Clustering Error

Theorem 1 Under certain regularity assumptions, any algorithm that is β-locally better-

than-random in Φ must satisfy

EΦ

[∣∣∣E(f̂)
∣∣∣] ≥ n exp

(
−TH

n
I(Φ)(1 + on(1))

)
(1)

where I(Φ) := − n
TH log

(
1

2ηSn

∑
x∈X exp

(
−THn I(x; Φ)

))
.

Proof.
Utilizes the change-of-measure argument [Lai and Robbins, 1985].

- I(x; Φ) is an information-theoretic quantity that quantifies the difficulty of clustering for

each context x ∈ X .

- I(x; Φ) is defined through an optimization problem (ugly expressions!) [Jedra et al., 2022].
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Latent State Decoding Algorithm

A two-phase algorithm with performance matching the lower bound up to some universal

constants.

• Phase 1

{(x(t)
h , a

(t)
h )t∈[T ],h∈[H]} −→ Matrix estimation −→ (N̂a,Γa)a∈A

(N̂a,Γa)a∈A −→ S-rank approximation −→
(
M̂a

)
a∈A

(M̂a)a∈A (M̂>a )a∈A −→ Aggregation −→ M̂

M̂ −→ `1-weighted K-medians −→ f̂1

• Phase 2

f̂1 −→ Iterative Likelihood Improvement −→ f̂
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Phase 1: Spectral Clustering
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Phase 1: Spectral Clustering

Phase 1

• Construction matrices of observations

N̂a(x, y) =
∑
t,h

1

[
(x

(t)
h , a

(t)
h , a

(t)
h+1) = (x, a, y)

]
• Trimming

N̂a,Γa(x, y) = N̂a(x, y)1 [(x, y) ∈ Γa × Γa]

where Γa corresponds to the remaining context in X after removing⌊
n exp

(
−THnA log

(
TH
nA

))⌋
contexts with the highest number of visits.
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Initial Error Upper Bound after Spectral Clustering

Theorem 2 (Initial Spectral Clustering) If TH = ω(n), and I(Φ) > 0, f̂1 outputted from

the initial spectral clustering satisfies

|E(f̂1)|
n

≤ O
(
nSA

TH

)
w.h.p.

(I(Φ) > 0 means clustering is possible in an information-theoretic sense)
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Phase 2: Iterative Likelihood Improvement
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Final Error Upper Bbound after Iterative Likelihood Improvement

Theorem 3 (i) (Iterative Likelihood Improvement) If TH = ω(n), and I(Φ) > 0, f̂

outputted from the iterative likeliehood improvement started from f̂1 satisfies

|E(f̂)|
n

= O

(
1

n

∑
x∈X

exp

(
−CTH

n
I(x; Φ)

))
w.h.p.

where C = poly(η).

- The form of L is inspired by the derivation of the lower bound (Theorem 1).

- If f̂1 is sufficiently good (Theorem 2), then the likelihood iterations are contractive and

convergence to the optimal f is guaranteed with high probability.

- Exact clustering when TH − n log(n)
CI(x;Φ) = ωn(1) for all x ∈ X .
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3. Experiments

(Our Contributions)



Setting

• Consider a simple synthetic BMDP with n = 100, S = 2, A = 3 with the latent transition

matrix of each action given as

P1 =

[
1/2− ε 1/2 + ε

1/2 + ε 1/2− ε

]
, P2 =

[
1/2 + ε 1/2− ε
1/2− ε 1/2 + ε

]
, P3 =

[
1/2 1/2

1/2 1/2

]
,

where ε ∈ [0, 1/2) is the parameter determining the hardness of our BMDP instance and is

pre-determined.

• We use the uniform behavior policy to generate the trajectories.

It is necessary to consider all actions via concatenation in the initial spectral clustering!

Observation 1. Playing the third action does not provide any useful information for clus-

tering, as the latent transition probabilities are all the same.

Observation 2. Considering the “marginalized” Markov chain, i.e., a single Markov chain

with average transition matrix 1
3 (P1 + P2 + P3), renders clustering impossible.
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Implementation

• The whole algorithm was implemented using Python

• For initial spectral clustering, we use the pyclustering [Novikov, 2019] for the K-median

clustering

• All experiments were repeated 100 times to ensure statistical significance, and the results

are shown via error bar/scatter plots

17



Experiment #1. Non-corrupted Setting

Vary H (length of episodes), T (number of episodes), and ε (difficulty of the BMDP

instance)

20 30 40 50 60 70 80 90 100
H

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r r
at

e Algorithm
Init Spectral
Likelihood Improvement

Experiment 1: Varying H (n=100, T=20, eps=0.3)

(a) Varying H

5 10 15 20 25 30 35 40 45
T

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r r
at

e Algorithm
Init Spectral
Likelihood Improvement

Experiment 2: Varying T (n=100, H=100, eps=0.3)

(b) Varying T

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
eps

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r r
at

e

Algorithm
Init Spectral
Likelihood Improvement

Experiment 3: Varying eps (n=100, T=30, H=50)

(c) Varying ε

Figure 1: Sensitivity of clustering performance on various levels of T,H, ε.
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Experiment #2. Randomly corrupted Setting

• Is the algorithm robust to corruption in the given dataset?

• We fix T = 30, H = 100, and ε = 0.35.

Vary δ1 (δ1T trajectories corrupted), δ2 (δ2H contexts corrupted), and δ3 (δ3H actions

corrupted)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
delta1

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r r
at

e Algorithm
Init Spectral
Likelihood Improvement

Experiment 4: Varying delta1 (delta2=0.2, delta3=0.2)

(a) Varying δ1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
delta2

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r r
at

e Algorithm
Init Spectral
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Experiment 5: Varying delta2 (delta1=0.7, delta3=0.2)

(b) Varying δ2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
delta3

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r r
at

e Algorithm
Init Spectral
Likelihood Improvement

Experiment 6: Varying delta3 (delta1=0.7, delta2=0.2)

(c) Varying δ3

Figure 2: Sensitivity of clustering performance on various (random) corruption levels of δ1, δ2, δ3.
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Some Observations

• A phase transition happening, from which exact clustering is observed

• consistent with the Kesten-Stigum bound of clustering in binary SBM [Abbe, 2018], and

even the asymptotic phase transition of BMDP [Jedra et al., 2022]

• Difference between effect of T and H; can we (theoretically) quantify this in finite-sample

regime?

• Why the outliers?

: the initial spectral clustering sometimes results in poor initialization for the likelihood

improvement step.

• Not contradictory to the results of [Jedra et al., 2022], which hold w.h.p. as n→∞.
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4. Concluding Remarks



Concluding Remarks

Related work: All previous works provide experiments on only the downstream RL task (i.e.,

regret, value gap...etc) [Jiang et al., 2017, Dann et al., 2018, Du et al., 2019,

Misra et al., 2020, Foster et al., 2021, Zhang et al., 2022].

Our contributions: Preliminary empirical analyses of two-phase clustering algorithm

[Jedra et al., 2022] for synthetic block MDP problems.

Open problems:

- More memory-efficient clustering algorithm? (e.g., via random linear combination

[Yun and Proutiére, 2016])

- Empirical and theoretical exploration to adaptive adversaries [Liu and Moitra, 2022] and

methods to mitigate them [Yun and Proutiére, 2019, Tarbouriech et al., 2020].

- Beyond Block structure → Low Rank.
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[Optional] Block MDPs vs Linear MDPs

Linear structure: P (x′|x, a) = φ(x, a)>µ(x′), with φ(x, a), µ(x′) ∈ Rd

Block MDPs have a linear structure in dimension d = SA:

φ(x, a) = e(f(x),a), µ(x′)(s,a) = q(x′|f(x′))p(f(x′)|s, a).

Linear MDPs ≤ Block MDPs ≤ Low Rank MDPs

µ is unknown

φ is known

µ is unknown

φ is unknown

φ ∈ FBMDP

d = SA

µ is unknown

φ is unknown

φ ∈ F

Linear structure in RL:

Linear MDP︸ ︷︷ ︸
P (x′|x,a)=φ(x,a)>µ(s′)

+ Structured rewards︸ ︷︷ ︸
r(x,a)=φ(x,a)>θ

=⇒ Q-function is linear︸ ︷︷ ︸
Qπ(x,a)=φ(x,a)>ξπ

22



References



Abbe, E. (2018).

Community Detection and Stochastic Block Models: Recent Developments.

Journal of Machine Learning Research, 18(177):1–86.

Azar, M. G., Munos, R., and Kappen, H. J. (2013).

Minimax PAC bounds on the sample complexity of reinforcement learning with a

generative model.

Machine Learning, 91(3):325–349.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. (2016a).

Reinforcement Learning in Rich-Observation MDPs using Spectral Methods.

In Proceedings of the 3rd Multidisciplinary Conference on Reinforcement Learning and

Decision Making (RLDM).

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. (2016b).

Reinforcement Learning of POMDPs using Spectral Methods.

In Feldman, V., Rakhlin, A., and Shamir, O., editors, 29th Annual Conference on Learning

Theory, volume 49 of Proceedings of Machine Learning Research, pages 193–256,

Columbia University, New York, New York, USA. PMLR.

22



Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., and Schapire, R. E.

(2018).

On Oracle-Efficient PAC RL with Rich Observations.

In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett,

R., editors, Advances in Neural Information Processing Systems, volume 31. Curran

Associates, Inc.

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik, M., and Langford, J. (2019).

Provably efficient RL with Rich Observations via Latent State Decoding.

In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International

Conference on Machine Learning, volume 97 of Proceedings of Machine Learning

Research, pages 1665–1674. PMLR.

Foster, D., Rakhlin, A., Simchi-Levi, D., and Xu, Y. (2021).

Instance-Dependent Complexity of Contextual Bandits and Reinforcement

Learning: A Disagreement-Based Perspective.

In Belkin, M. and Kpotufe, S., editors, Proceedings of Thirty Fourth Conference on

Learning Theory, volume 134 of Proceedings of Machine Learning Research, pages

2059–2059. PMLR.

Jaksch, T., Ortner, R., and Auer, P. (2010).

22



Near-optimal Regret Bounds for Reinforcement Learning.

Journal of Machine Learning Research, 11(51):1563–1600.
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