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Motivation

• Importance of Softmax Parametrization:

• Conversion of raw scores to normalized probability distributions

• Crucial role in designing effective algorithms due to probabilistic interpretations

• Application Domains:

• Reinforcement Learning (RL) - Multinomial logistic MDP [Hwang and Oh, 2023]

• Human decision-making [Reverdy and Leonard, 2016]

• Deep neural networks [Seddik et al., 2021]

• Statistical ranking theory - Bradley-Terry model [Bradley and Terry, 1952], Plackett-Luce

model [Plackett, 1975]
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1. Problem Settings



Linear Softmax Parametrization (LSP)

Given a state space S with |S| = S, a discrete probability distribution p over S is said to have

a linear softmax parametrization if there exists a θ⋆ ∈ Rd such that

p⋆(s) ≜ pθ⋆(s) :=
exp(φ(s)⊺θ⋆)∑

s̃∈S exp (φ(s̃)⊺θ⋆)

- d is the dimension of latent space

- φ : S → Rd is feature mapping function, fixed and known to the learner

From a deep learning perspective, φ is the neural features outputted from the body.
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Learner’s Goal

• Given an offline dataset D = {s1, s2, · · · , sN} with si
i.i.d.∼ p⋆, the learner’s goal is to

obtain an accurate estimate of p⋆, which we now denote as p̂.

• The total variation (TV) distance is used to measure quality of estimation:

dTV (p1, p2) :=
1

2

∑
s∈S

|p1(s)− p2(s)|, p1, p2 ∈ P(S).

• P(S) is the set of distributions whose support is S.
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2. Theoretical Analyses of LSP



Expressivity

Theorem 1 Let P(S) be the set of distributions whose support is S and P(φ) be those

with an LSP. Denote Φ = [φ(s1) · · ·φ(sn)]⊺ ∈ RS×d. Then P(φ) = P(S) if and only if Φ

has linearly independent columns or col(Φ) = Rd.

- Theorem 1 states that with reasonable condition on Φ, the set of distributions with a

LSP is maximally expressive!

- In other words, any “nonparametric” distribution estimation can be converted to a

“parametric” distribution estimation by utilizing an appropriate feature matrix via LSP.
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Nonidentifiability

Theorem 2 The following holds:

• dTV (pθ⋆ , pθ̂) ⩽
1
2∥θ

⋆ − θ̂∥2
∑

s∈S maxs′∈S∥φ(s)− φ(s′)∥2.
• If 1S ∈ col(Φ) or null(Φ) ̸= {0S}, then the following holds:

∀v > 0 ∃θ̃⋆ ∈ Rd s.t. pθ̃⋆ = pθ⋆ , yet ∥θ̃⋆ − θ⋆∥2 ⩾ v.

- Tight bound on ∥θ⋆ − θ̂∥2 implies low TV distance, but not vice versa.

- Nonidentifiability persists due to softmax’s translation invariance, regardless of whether

we are in the overparametrized regime (d ⩾ S) or not.

- Previous works make additional assumptions or use regularized M-estimator

[Negahban et al., 2012] to resolve nonidentifiability

Our goal is to estimate distribution, not the parameter !
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3. Distribution Estimators



Nonparametric Estimator

The nonparametric estimator is defined as follows:

p̂nonparam(s) :=

∑N
i=1 1[si = s]

N

Some known facts [Han et al., 2015]:

• dTV (p, p̂nonparam) = O
(√

S
N

)
.

• This rate is minimax optimal, i.e., the best performing in the worst case.
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Parametric Estimator

The parametric estimator is defined as p̂param(s) := pθ̂(s) where

θ̂ := argmax
θ∈Rd

N∑
n=1

log pθ(sn)−
λ

2
∥θ∥2

= argmax
θ∈Rd

∑
s∈S

N̂(s) log pθ(s)−
λ

2
∥θ∥2.

- N̂(s) :=
∑N

n=1 1[sn = s] is the empirical visitation frequency of s

- λ ≥ 0 is a regularization parameter

- We use gradient descent (GD) for computing the optimization problem.
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More on Estimators

- Nonparametric estimator does not assume any particular functional form for the

distribution, while parametric does, namely, the LSP parametrization.

- For parametric estimator, due to nonidentifiability issues, there is no known error rate for

the resulting estimated distribution.

- From existing works on identifiable cases [Negahban et al., 2012], one could make an

educated guess that the error rate for parametric estimator would be approximately

O
(

1√
N

)
, at least in terms of the sample size N .
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4. Experiments

(Our Contributions)



Setting

• Teacher-student setting where φ and θ⋆ is fixed

• Three estimators are used: nonparametric, parametric with λ = 0 (”unregularized”), and

parametric with optimal λ (”regularized”)

• The regularization parameter λ is found via grid-search for each set of experiments.

Research Questions:

1. What is the dependency of the error rate of the parametric estimator on N?

2. Which is the best estimator?

3. What is the dependency on d?

4. Is regularization effective?

11



Setting

• Teacher-student setting where φ and θ⋆ is fixed

• Three estimators are used: nonparametric, parametric with λ = 0 (”unregularized”), and

parametric with optimal λ (”regularized”)

• The regularization parameter λ is found via grid-search for each set of experiments.

Research Questions:

1. What is the dependency of the error rate of the parametric estimator on N?

2. Which is the best estimator?

3. What is the dependency on d?

4. Is regularization effective?

11



Experiment #1. Vary N

(a) TV vs. N (log-log plot) (b) TV vs. epoch (unregularized)

• All estimators have a slope of (approximately) −0.5 in the log-log plot

→ all estimators have the error rate of the form O
(

1√
N

)
w.r.t. N .

• Still, parametric estimator attains smaller error than nonparametric

→ smaller multiplicative/additive constant in d or S?

• Sign of overfitting for small N , which is somewhat resolved via regularization
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Experiment #2. Vary d

(c) TV vs. d (log-log plot) (d) TV vs. epoch (unregularized)

• The error rate seems to be unaffected by varying d

→ the error rate doesn’t depend on d?

• Still, parametric outperforms nonparametric across considered d’s.

• High d results in harder optimization (e.g., longer plateau)
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4. Concluding Remarks



Concluding Remarks

Our contributions: We introduce LSP and formally prove the expressivity and

nonidentifiability guarantees of LSP. Experiments show that the parametric estimator

leveraging LSP, although it has the same O
(

1√
N

)
decay rate in N , results in a lower error rate

than the nonparametric estimator.

Open problems:

- Rigorous statistical guarantees (e.g., minimax optimality) of the parametric estimator

- Linear softmax parametrization → Nonlinear softmax parametrization
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