

Fair Streaming Principal Component Analysis: Statistical and Algorithmic Viewpoint

Junghyun Lee*, Hanseul Cho*, Se-Young Yun, Chulhee Yun

Kim Jaechul Graduate School of AI, KAIST

Optimization and Statistical Inference LAB

Fair PCA: Problem Setting

- Group fairness scenario, with binary¹ sensitive attribute $a \in \{0,1\}$
 - e.g., {young, old}, {rich, poor}, {male, female}

<u>Given.</u>

- Samples from a mixture of \mathcal{D}_0 and \mathcal{D}_1 of the form (a, x)
 - \mathcal{D}_a 's covariance is Σ_a ; the total covariance is Σ

Our Goal.

- Output a loading matrix $V \in \mathbb{R}^{d \times k}$, $V^T V = I_k$ such that
 - **Explained variance (PCA)**: maximize $tr(V^T \Sigma V)$
 - **Representation fairness**: make the (conditional) distributions after PCA *indistinguishable* [Olfat & Aswani, AAAI'19; Lee et al., AAAI'22, Kleindessner et al., AISTATS'23]

¹In our paper, we provide discussions on how to extend this to multiple sensitive groups and non-binary attributes

Unsolved Problems in Fair PCA

Statistical Viewpoint

- No statistical framework
 - PAC-type definition
 - Sample complexity guarantee
- Use of several relaxations without theoretical justifications [Olfat & Aswani, AAAI'19; Kleindessner et al., AISTATS'23]

Algorithmic Viewpoint

- Too much memory requirement
 - Require loading the whole data
 - Require computing the entire (empirical) covariance matrix
- Streaming setting? [Mitliagkas et al., NIPS'13]

Contribution #1. Statistical Viewpoint

"Null It Out" Formulation of Fair PCA

- 1. mean difference $\mathbf{f} \coloneqq \mathbf{\mu}_1 \mathbf{\mu}_0$
- 2. top *m* eigenvectors P_m of the covariance difference $\Sigma_1 \Sigma_0$

$$\max_{V^T V = I_k} \operatorname{tr}(V^T \Sigma V), \quad \text{subject to } V \perp f \text{ and } V \perp P_m$$
$$\iff \max_{V^T V = I_k} \operatorname{tr}(V^T \Pi_U^{\perp} \Sigma \Pi_U^{\perp} V)$$

where $\Pi_U^{\perp} \coloneqq I - UU^T$ and U is a semi-*orthogonal* matrix whose columns form a basis of $col([P_m|f])$.

 V^{\star} is the solution to the above.

PAFO-Learnability

• We propose a learnability framework for fair PCA!

Definition 2. A collection \mathcal{F}_d of tuples $(\mathcal{D}_0, \mathcal{D}_1, p)$ is **PAFO**^{*}-learnable for **PCA** if for any accuracy levels $\varepsilon_0, \varepsilon_f \in (0, 1)$ and confidence level $\delta \in (0, 1)$, with <u>sufficiently many samples</u>^{**} from $\mathcal{D} = p\mathcal{D}_1 + (1-p)\mathcal{D}_0$, we can obtain \widehat{V} satisfying the following with probability at least $1 - \delta$:

$$\operatorname{tr}(\widehat{V}^{T}\Sigma\widehat{V}) \geq \operatorname{tr}({V^{\star}}^{T}\Sigma V^{\star}) - \varepsilon_{o}, \qquad \left\| \Pi_{U}\widehat{V} \right\| \leq \varepsilon_{f}.$$
Optimality
Fairness

*Probably Approximately Fair and Optimal

**sample complexity depends on ε_{o} , ε_{f} , δ , and distribution-dependent quantities.

Contribution #2. Algorithmic Viewpoint

Fair Streaming PCA

• A new problem setting called *fair streaming PCA* that accounts for memory limitation common in big data regimes:

- Here, the learner can use only $o(d^2)$ memory!
 - To be precise, $O(d \max(k, m))$ memory, where k is the target dimension and m is the nullifying dimension.

Fair Noisy Power Method (FNPM)

- We then propose a new algorithm, the Fair Noisy Power Method (FNPM)
 - A two-phase algorithm based on the noisy power method [Hardt & Price, NIPS'14]

```
Phase 1. Estimate U:for t \in [T] doSample b data points;W_t \leftarrow QR((\widehat{\Sigma}_{1,t} - \widehat{\Sigma}_{0,t})W_{t-1});end\widehat{f} \leftarrow MLE estimator of f;\widehat{g} \leftarrow \frac{\Pi_{W_T}^{\perp} \widehat{f}}{\|\Pi_{W_T}^{\perp} \widehat{f}\|};return \widehat{U} = [W_T \mid \widehat{g}]
```

Phase 2. Obtain the final \widehat{V} : for $\tau \in [\mathcal{T}]$ do Sample *B* data points; $V_{\tau} \leftarrow QR(\Pi_{\widehat{U}}^{\perp}\widehat{\Sigma}_{\tau}\Pi_{\widehat{U}}^{\perp}V_{\tau-1});$ end return $\widehat{V} = V_{\mathcal{T}}$

- We also provide a sample complexity guarantee of FNPM
 - the first of its kind in the fair PCA literature!

Experiments

- Full-color, original resolution CelebA Dataset
 - All 162,770 images cannot be loaded into the memory of a moderate-sized computer
- Transform the setting to *streaming* and apply our FNPM!
- The most scalable fair PCA algorithm to date!

Sensitive attribute: Eyeglasses

Full paper (arXiv)

GitHub link