
Contributions Preliminaries
• Heavy-ball momentum (PHB):

•    is the learning rate (possibly scheduled)
•                is the momentum parameter

• Maximum stable sharpness (MSS):
• Minima with sharpness above MSS are unstable (Cohen et al., 2021)

• Linear warmup from     to     : 
• This allows for stable training with large learning rate

• We provide empirical evidence suggesting that gradient descent (GD) 
with momentum with learning rate warmup induces a large catapult 
(compared to vanilla GD).

à larger sharpness reduction à flatter minima
• We show this holds for a wide range of settings.
• We relate this to the self-stabilization mechanism (Damian et al., 2023).
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Motivation: Linear Diagonal Networks
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Linear Diagonal Networks (LDNs).

• Final test loss increases with     until saturation, consistent with the 
observations of Nacson et al. (2022).

• Sharpness closely follows the MSS curve with multiple small catapults.
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Multiple small catapults Single large catapult

• After certain     , the final test loss suddenly decreases due to a 
large catapult.

• Sharpness significantly deviates from the MSS after a large 
catapult.

f(x;u,v) := ⟨u⊙ u− v ⊙ v,x⟩ = ⟨w,x⟩, u0 = v0 = α · 1

Nonlinear Networks
FCN trained on rank-2 dataset (Zhu et al., 2023):

ResNet20 trained on 1k subset of CIFAR10:

Toy Example
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• Consider the following toy loss function:

• Trajectory & sharpness plots of GD vs. PHB:

• Resembles self-stabilization (Damian et al., 2023):
1) Progressive Sharpening*. Stable training, Sharpness increases
2) Blowup. Sharpness > MSS, divergent dynamics

3) Self-Stabilization. Movement in      direction stabilizes dynamics in 
the     direction and decreases sharpness

4) Return to Stability. Sharpness < MSS
*This stage may not occur depending on the scenario (e.g., initialization).
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Momentum prolongs self-stabilization effect in the 
direction of negative gradient of the sharpness
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