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• Interesting, non-monotone behaviors:


• Edge of Stability (EoS) [Cohen et al., ICLR’21]


• Catapults [Lewkowycz et al., 2020]


• Balancing Effect [Wang et al., ICLR’22]


• Implicit bias of moderate/large learning rates:

  [Li et al., NeurIPS’19; Wu et al., ICLR’21; Damian et al., NeurIPS’21]

Preliminaries
Optimization with Large Learning Rates

• Maximum stable sharpness (MSS). For a quadratic loss, the threshold at 
which the optimization algorithm diverges if its sharpness goes above it


[Cohen et al., ICLR’21] The MSS of GD with momentum at time  is t
2(1 + β)

ηt



Preliminaries
Learning rate warmup

• To stably train with high learning rate , we use learning rate warmup 

• The use of warmup (and its effectiveness) has been studied extensively

 [Gotmare et al., ICLR’19; Liu et al., ICLR’20] 

• Linear warmup. Starting from an small initial learning rate , linearly increase 
the learning rate to  over the prescribed warmup period : 




• During the warmup, we have a decaying MSS curve!

ηf

ηi
ηf Twarmup

ηt = ηi +
ηf − ηi
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Linear Diagonal Networks
Motivating example

• Linear diagonal network (LDN):





• Sparse regression: the ground truth  is assumed to be sparse!


• Training samples. 


• Initialization: , with  being the initialization scale 

We want an implicit bias towards sparse 

f(x; u, v) := < u ⊙ u − v ⊙ v, x > , x, u, v ∈ ℝd

w⋆

xn ∼ 𝒩d(μ, σ2I), yn = ⟨w⋆, xn⟩

u0 = v0 = α ⋅ 1 α > 0

wT = uT ⊙ uT − vT ⊙ vT

≜ w



Linear Diagonal Networks
Known results

• Gradient flow [Woodworth et al., COLT’20; Pesme & Flammarion, NeurIPS’23]

: minimum -norm solution as , and minimum -norm solution as 

: saddle-hopping dynamics


• Stochastic gradient flow [Pesme et al., NeurIPS’21]

: stochasticity better generalization capability then gradient flow


• (S)GD with finite learning rate [Nacson et al., ICML’22; Even et al., NeurIPS’23]

: finite learning rate gives better generalization capability than flow regime, even at large 


What happens if we add momentum???

ℓ1 α → 0 ℓ2 α → ∞

α
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Linear Diagonal Networks
Momentum induces fundamentally different implicit bias!

[Nacson et al., ICML’22] Our new observation!!



Linear Diagonal Networks
Closer look reveals catapults!

What is happening here??



Catapult Mechanism
Definition

• Catapult. “a sharp increase in loss, followed by a decrease that forms a 
single spike in the training loss, coupled with a rapid sharpness reduction”


• So far studied only for GD [Lewkowycz et al., 2020; Meltzer & Liu, 2023; Zhu et al., 2022; 2023]


Some properties: 

• Iterates are “catapulted” to flatter minima!


• The catapult lasts for a very short time.


Our LDN (sharpness/loss) plots resemble catapult(s)!



Catapult Mechanism for LDNs
Gradient descent

• Sharpness closely follows the MSS curve with multiple, small catapults 

• The final converged sharpness is just below the MSS of the final learning rate



Catapult Mechanism for LDNs
Gradient descent with momentum

• Sharpness stays constant until it crosses the MSS curve, at which point there 
is a single, large catapult 

• The final converged sharpness is well below the MSS of the final learning rate



Towards the “Why” of Large Catapults
Toy example

• Consider a 2D toy loss function: 


• Intuitions behind this toy example: 


• -direction: unstable direction


• -direction: sharpness changing direction


• “Analogue” of the self-stabilization mechanism [Damian et al., ICLR’23]


• Future work. Considering more “realistic” toy losses (e.g., quadratic regression?)

f(x, y) =
x2

2y
, y > 0.

x

y



Towards the “Why” of Large Catapults
Toy example!
• The trajectory resembles the self-stabilization [Damian et al., ICLR’23] for 

GD:


1. Progressive Sharpening1 

2. Blowup 
When the sharpness > MSS, a (locally) divergent dynamics in the  
direction causes a sharp increase in the loss, while shooting the 
iterates in  direction


3. Self-Stabilization 
Movement in  direction stabilizes the dynamics in the  direction, 
and decreases sharpness


4. Return to Stability 
When the sharpness drops below MSS, the iterates converges locally


• A single catapult is basically step 2~3!

x

+y

+y x

1This may not occur depending on the problem setting, such as model complexity and initialization.
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Towards the “Why” of Large Catapults
Main Hypotheses

• Momentum controls the blow-up from being too large 
via dampening effect


• Momentum prolongs the self-stabilization via 
acceleration in the direction of the negative gradient 
of the sharpness



Nonlinear Neural Networks
The observations hold for more complex scenarios!

FCN trained on rank-2 (synthetic) dataset:


ResNet20 trained on 1k subset of CIFAR10:
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Conclusion & Future Works

Conclusion. 

• PHB (with learning rate warmup) induces large catapults, leading to flatter 
minima


• This is verified over various settings (LDN, toy, nonlinear neural networks)


• The phenomenon is similar to self-stabilization effect


Future Works. 

• Effect of stochasticity, adaptive momentum? => More extensive experiments 

• A complete (or even partial) theoretical characterization
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Prior Works
Implicit bias of heavy-ball momentum

• Small learning rate regime, ODE analysis  stronger (flat) regularizer

 [Ghosh et al., ICLR’23; Wang et al., AAAI’23]


• Binary classification scenarios

 [Jelassi & Li, ICML’22; Wang et al., NeurIPS’22]

→

We are the first to systemically study the dynamics (and implicit bias effect) of 
momentum in large learning rate regime for regression setting!


