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Contributions

• A unified, state-of-the-art construction of likelihood
ratio-based confidence sequence (CS) for any convex
generalized linear models (GLMs), with explicit constants!

• A new CS-based algorithm (OFUGLB) that achieves the
state-of-the-art regret for self-concordant GLBs.

• Numerical verifications in logistic bandits show the
tightness of our new CS and that OFUGLB achieves the
best numerical regret by a large margin.

Problem Settings

Generalized Linear Models (GLMs)
For a covariate x ∈ X and an unknown parameter θ⋆ ∈ Θ, the
reward r follows the GLM if

dp(r|x; θ⋆) = exp
(

r⟨x, θ⋆⟩ − m(⟨x, θ⋆⟩)
g(τ )

+ h(r, τ )
)

dν, (1)

where τ is some known scaling (temperature) parameter, and ν
is some known base measure (e.g., Lebesgue, counting).

Assumptions:
→ Assumption 1. X ⊆ Bd(1).
→ Assumption 2. θ⋆ ∈ Θ ⊆ Bd(S) := {θ ∈ Rd : ∥θ∥2 ≤ S} for
some known S > 0. Also, Θ is nonempty, compact, and convex
with intrinsic dimension d.
→ Assumption 3. m is three times differentiable and convex,
i.e., m′′′ exists and µ̇ := m′′ ≥ 0.

Well-known properties:
→ Property 1. E[r|x, θ⋆] = m′(⟨x, θ⋆⟩) ≜ µ(⟨x, θ⋆⟩)
→ Property 2. Var[r|x, θ⋆] = g(τ )µ̇(⟨x, θ⋆⟩).
µ is the inverse link (mean) function.

Question #1

Given a (possibly adaptively-collected) sequential data
{(xt, rt)}t≥1 sampled from any GLM, output the tightest
confidence sequence (CS) for θ⋆, i.e., for any δ ∈ (0, 1),
{Ct(δ)}t≥1 such that P[∃t ≥ 1 : θ⋆ ̸∈ Ct(δ)] ≤ δ.

Generalized Linear Bandits (GLBs)
First proposed in Filippi et al. [2010] as a nonlinear generalization
of linear bandits.
For t ∈ [T ]:
1 The learner observes a potentially infinite (contextual)

arm-set Xt ⊂ X

2 The learner chooses xt ∈ Xt according to some policy
3 Receive a reward rt|xt ∼ p(·|xt, θ⋆) (Eqn. (1))
Goal. Minimize:

RegB(T ) :=
T∑

t=1
{µ(⟨xt,⋆, θ⋆⟩) − µ(⟨xt, θ⋆⟩)} ,

where xt,⋆ := arg maxx∈Xt
µ(⟨x, θ⋆⟩).

Applications. News recommendations (Bernoulli), social net-
work influence maximization (Poisson), etc [Filippi et al., 2010].

We define the following problem-dependent quantities:

κ⋆(T ) :=

 1
T

T∑
t=1

µ̇(x⊺
t,⋆θ⋆)

−1

, κX (T ) :=max
t∈[T ]

max
x∈Xt

1
µ̇(x⊺θ⋆)

,

and κ(T ) := max
t∈[T ]

max
x∈Xt

max
θ∈Θ

1
µ̇(x⊺θ)

.

These can scale exponentially in S (e.g., Bernoulli)!

d
√

T/κ⋆(T )-type regret has been obtained for bounded GLBs
in a concurrent work of Sawarni et al. [2024], but they make use
of explicit warmup and consider limited adaptivity setting.

Question #2

Using our tight CS, how do we obtain tight regret bounds for
a wide range of GLBs via a purely optimistic approach?

A Unified CS for GLMs

We consider log-likelihood-based confidence set “centered” at
the norm-constrained, batch maximum likelihood estimator
(MLE):

Ct(δ) :=
{
θ ∈ Θ : Lt(θ) − Lt(θ̂t) ≤ βt(δ)2

}
, (2)

where βt(δ)2 is the “radius” of the CS that we will define later,
and Lt(θ) is the negative log-likelihood of θ w.r.t. data collected
up to t − 1, and

Lt(θ) :=
t−1∑
s=1

{
ℓs(θ) ≜ −rs⟨xs, θ⟩ + m(⟨xs, θ⟩)

g(τ )

}
, (3)

θ̂t := arg min
θ∈Θ

Lt(θ). (4)

Theorem 3.1. Let Lt := maxθ∈Θ ∥∇Lt(θ)∥2 be the Lip-
schitz constant of Lt(·) that may depend on {(xs, rs)}t−1

s=1.
Then, we have P[∃t ≥ 1 : θ⋆ ̸∈ Ct(δ)] ≤ δ, where

Ct(δ) =
{
θ ∈ Θ : Lt(θ) − Lt(θ̂t) ≤ βt(δ)2

}
, (5)

where βt(δ)2 ≤ log 1
δ + d log

(
e ∨ 2eSLt

d

)
.

For Bernoulli, our radius of Oδ(d log(St/d)) this is a strict im-
provement over prior Oδ (d log(St/d) + S) of Lee et al. [2024].
→ Remark. This resolves an open problem posited by Lee
et al. [2024] on poly(S)-free CS for Bernoulli.

We consider the following additional assumption on the GLM:
→ Assumption 4. (self-concordance) For some Rs ∈ (0, ∞),
|µ̈(⟨x, θ⟩)| ≤ Rsµ̇(⟨x, θ⟩) for all x ∈ X, θ ∈ Θ.

For this class of GLMs, we have a slightly relaxed ellipsoidal CS:

Theorem 3.2. With the same notations as Theorem 3.1,
we have P[∃t ≥: θ⋆ ̸∈ Et(δ)] ≤ δ, where

Et(δ) :=
{

θ ∈ Θ :
∥∥∥θ − θ̂t

∥∥∥2

∇2Lt(θ̂t)+1+SRs
2S2 Id

≤ γt(δ)2
}

, (6)

where γt(δ)2 := 2(1 + SRs)(1 + βt(δ)2).

→ Remark. This is easier to implement in practice, and for
bandits, this amounts to a closed-form bonus in UCB.

Proof via PAC-Bayes with Uniform Prior/Posterior
1. PAC-Bayesian Time-Uniform Bound.

Lemma 3.3. For any data-independent prior Q and any
sequence of adapted posterior distributions {Pt}, the fol-
lowing holds: for any δ ∈ (0, 1),

P
(

∃t ≥ 1 : Lt(θ⋆) − Eθ∼Pt
[Lt(θ)] ≥ log 1

δ
+ KL(Pt||Q)

)
≤ δ.

(7)

Proof sketch. This is a standard recipe using Ville’s inequal-
ity and Donsker-Varadhan variational representation of KL; see
Chugg et al. [2023] for relevant references.

2. Novel choice of Q and Pt.
For c ∈ (0, 1] to be determined later, we set

Q = Unif(Θ), Pt = Unif(Θ̃t ≜ (1 − c)θ̂t + cΘ), (8)
where a + Θ = {a + θ : θ ∈ Θ} for a vector a ∈ Rd.
Then, we have

KL(Pt||Q) = log vol(Θ)
vol(Θ̃)

= d log 1
c
.

3. Lipschitzness of Lt(·).
We also have that
Eθ∼Pt

[Lt(θ)] = Lt(θ̂t)+Eθ∼Pt
[Lt(θ)−Lt(θ̂t)] ≤ Lt(θ̂t)+2SLtc,

where the last inequality follows from the Lipschitzness of Lt(·)
and the observation that for θ = (1 − c)θ̂t + cθ̃ ∈ Θ̃t and∥∥∥θ − θ̂t

∥∥∥
2

= c
∥∥∥θ̃ − θ̂t

∥∥∥
2

≤ 2Sc. We conclude by choosing min-
imizing over c ∈ (0, 1]. The expression in Theorem 3.1 follows
from c = 1 ∧ d

2SLt
.

→ Remark. Such choices of Q and Pt have been considered
previously in universal portfolios [Blum and Kalai, 1999] and
fast rates in online learning [Foster et al., 2018]. This is the
first time such a translated/shrunken posterior has been used
in the PAC-Bayes context.

OFUGLB

OFUGLB is of the following form:
1 Obtain θ̂t (Eqn. (4)) and Ct(δ) (Theorem 3.1)
2 Solve (xt, θt) = arg maxx∈Xt,θ∈Ct(δ) µ(⟨x, θ⟩)
3 Play xt, then observe/receive a reward rt ∈ {0, 1}.
We then have the following state-of-the-art regret bound:

Theorem 4.1. OFUGLB attains the following regret
bound with probability at least 1 − δ:

RegB(T ) ≲δ d

√√√√g(τ )T
κ⋆(T )

+ d2RSRµ̇

√
g(τ )κ(T ),

where Rµ̇ := maxx∈X[T ],θ∈Θ µ̇(⟨x, θ⟩).

→ Remark. Nontrivial technical contributions, including a new
optimistic upper bound of regret, self-concordant control, etc.

Linear bandits. Õ(σd
√

T )
→ matches prior state-of-the-art [Flynn et al., 2023]
Logistic bandits. Õ(d

√
T/κ⋆(T ) + d2κ(T ))

→ first poly(S)-free regret with purely optimistic approach,
improves upon OFULog+ of Lee et al. [2024]!
Poisson bandits. Õ(dS

√
T/κ⋆(T ) + d2e2Sκ(T ))

→ first regret guarantee!

Experiments for Logistic Bandits

(a) S = 5 (b) S = 10
Figure 1:Numerical regrets.

(a) S = 5 (b) S = 10
Figure 2:Confidence sets at t = 4000 from a single run.

Future Directions

• Extension to kernelized/functional GLMs?
• Implications to RLHF; see e.g., Das et al. [2024].
• Arm-set geometry-dependent transient term for GLBs
• Regret lower bound of general GLBs
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