A Unified Confidence Sequence for Generalized Linear Models, with Applications to Bandits KAIST AI

ICML **International Conference** On Machine Learning

Junghyun Lee¹, Se-Young Yun¹, and Kwang-Sung Jun²

 1 Kim Jaechul Graduate School of AI, KAIST, \quad 2 Department of Computer Science, University of Arizona {jh_lee00, yunseyoung}@kaist.ac.kr, kjun@cs.arizona.edu

Contributions

For a covariate $x \in X$ and an *unknown* parameter $\theta_{\star} \in \Theta$, the reward *r* follows the **GLM** if

 $dp(r|\boldsymbol{x};\boldsymbol{\theta}_\star) = \exp\left(\frac{r\langle \boldsymbol{x}, \boldsymbol{\theta}_\star \rangle - m(\langle \boldsymbol{x}, \boldsymbol{\theta}_\star \rangle)}{\sigma(\boldsymbol{x})}\right)$ *g*(*τ*) $h(r,\tau)$ \setminus *dν,* (1)

- A *unified*, state-of-the-art construction of likelihood ratio-based confidence sequence (CS) for any convex generalized linear models (GLMs), with explicit constants!
- A new CS-based algorithm (**OFUGLB**) that achieves the state-of-the-art regret for self-concordant GLBs.
- Numerical verifications in logistic bandits show the tightness of our new CS and that OFUGLB achieves the

best numerical regret by a large margin.

Problem Settings

Generalized Linear Models (GLMs)

where *τ* is some known scaling (temperature) parameter, and *ν* is some known base measure (e.g., Lebesgue, counting).

Assumptions:

 \rightarrow Assumption 1. $X \subseteq \mathcal{B}^d(1)$. \rightarrow Assumption 2. $\boldsymbol{\theta}_{\star} \in \Theta \subseteq \mathcal{B}^d(S) := \{ \boldsymbol{\theta} \in \mathbb{R}^d : ||\boldsymbol{\theta}||_2 \leq S \}$ for some known $S > 0$. Also, Θ is nonempty, compact, and convex

Applications. News recommendations (Bernoulli), social net-work influence maximization (Poisson), etc [\[Filippi et al., 2010\]](#page-0-0).

We define the following problem-dependent quantities:

with intrinsic dimension *d*.

 \rightarrow Assumption 3. *m* is three times differentiable and convex, i.e., m''' exists and $\mu := m'' \geq 0$.

 $\kappa_\star(T) :=$ $\bigg)$ $\overline{ }$ 1 *T* \sum *T t*=1 $\dot{\mu}(\bm{x}$ ⊺ $_{t,\star}^{\intercal}\boldsymbol{\theta}_{\star})$ \setminus $\overline{ }$ −1 *,* $\kappa_{\mathcal{X}}(T):=\max_{\mathbf{r}\in\mathbb{R}^n}$ *t*∈[*T*] max $\boldsymbol{x} \small{\in} \mathcal{X}_t$ 1 $\overline{\dot{\mu}(\boldsymbol{x}^\intercal \boldsymbol{\theta}_\star)}$ *,* and $\kappa(T) := \max$ *t*∈[*T*] max $\boldsymbol{x} \in \! \mathcal{X}_{t}$ max *θ*∈Θ 1 $\overline{\dot{\mu}(\boldsymbol{x}^\intercal \boldsymbol{\theta})}$ *.*

Well-known properties:

 \rightarrow Property 1. $\mathbb{E}[r|\boldsymbol{x}, \boldsymbol{\theta}_\star] = m'(\langle \boldsymbol{x}, \boldsymbol{\theta}_\star \rangle) \triangleq \mu(\langle \boldsymbol{x}, \boldsymbol{\theta}_\star \rangle)$ \rightarrow Property 2. $Var[r|\boldsymbol{x}, \boldsymbol{\theta}_\star] = g(\tau)\mu(\langle \boldsymbol{x}, \boldsymbol{\theta}_\star \rangle).$

Using our tight CS, how do we obtain tight regret bounds for a wide range of **GLB**s via a *purely optimistic approach*?

We consider log-likelihood-based confidence set "centered" at the *norm-constrained*, batch maximum likelihood estimator (MLE):

Question #1

Given a (possibly adaptively-collected) sequential data $\{(x_t, r_t)\}_{t\geq 1}$ sampled from any GLM, output the tightest **confidence sequence (CS)** for θ_{\star} , i.e., for any $\delta \in (0,1)$, $\{\mathcal{C}_t(\delta)\}_{t>1}$ such that $\mathbb{P}[\exists t \geq 1 : \boldsymbol{\theta}_\star \notin \mathcal{C}_t(\delta)] \leq \delta.$

 $\mathcal{C}_t(\delta) := \left\{\boldsymbol{\theta} \in \Theta : \mathcal{L}_t(\boldsymbol{\theta}) - \mathcal{L}_t(\widehat{\boldsymbol{\theta}}_t) \leq \beta_t(\delta)^2 \right\}$ *,* (2)

where $\beta_t(\delta)^2$ is the "radius" of the CS that we will define later, and $\mathcal{L}_t(\theta)$ is the negative log-likelihood of θ w.r.t. data collected up to $t-1$, and

Generalized Linear Bandits (GLBs) First proposed in [Filippi et al. \[2010\]](#page-0-0) as a nonlinear generalization of linear bandits.

For $t \in [T]$:

- The learner observes a potentially infinite (contextual) arm-set $\mathcal{X}_t \subset X$
- The learner chooses $x_t \in \mathcal{X}_t$ according to some policy **3** Receive a reward $r_t | \boldsymbol{x}_t \sim p(\cdot | \boldsymbol{x}_t, \boldsymbol{\theta}_\star)$ (Eqn. [\(1\)](#page-0-1))

Theorem 3.1. Let $L_t := \max_{\theta \in \Theta} ||\nabla \mathcal{L}_t(\theta)||_2$ be the Lipschitz constant of $\mathcal{L}_t(\cdot)$ that may depend on $\{\bar{(\boldsymbol{x}}_s,r_s)\}_{s=1}^{t-1}$ $\frac{t-1}{s=1}$. Then, we have $\mathbb{P}[\exists t \geq 1 : \theta_{\star} \notin \mathcal{C}_t(\delta)] \leq \delta$, where $\mathcal{C}_t(\delta) = \left\{\boldsymbol{\theta} \in \Theta : \mathcal{L}_t(\boldsymbol{\theta}) - \mathcal{L}_t(\widehat{\boldsymbol{\theta}}_t) \leq \beta_t(\delta)^2 \right\}$ *,* (5) where $\beta_t(\delta)^2 \leq \log \frac{1}{\delta} + d \log \left(e \vee \frac{2eSL_t}{d} \right)$ *d* .

For Bernoulli, our radius of $\mathcal{O}_{\delta}(d \log(St/d))$ this is a strict improvement over prior $\mathcal{O}_{\delta}(d \log(St/d) + S)$ of [Lee et al. \[2024\]](#page-0-3). → Remark. *This resolves an open problem posited by [Lee](#page-0-3) [et al. \[2024\]](#page-0-3) on* poly(*S*)*-free CS for Bernoulli.*

We consider the following additional assumption on the GLM: \rightarrow Assumption 4. (self-concordance) For some $R_s \in (0,\infty)$, $|\ddot{\mu}(\langle \boldsymbol{x}, \boldsymbol{\theta} \rangle)| \leq R_s \dot{\mu}(\langle \boldsymbol{x}, \boldsymbol{\theta} \rangle)$ for all $\boldsymbol{x} \in X, \boldsymbol{\theta} \in \Theta$.

Theorem 3.2. With the same notations as Theorem 3.1, we have $\mathbb{P}[\exists t \geq : \theta_{\star} \notin \mathcal{E}_t(\delta)] \leq \delta$, where

Goal. Minimize:

 $\text{Reg}^B(T) := \sum$ *T t*=1 $\left\{ \mu(\langle \boldsymbol{x}_{t,\star}, \boldsymbol{\theta}_\star \rangle) - \mu(\langle \boldsymbol{x}_t, \boldsymbol{\theta}_\star \rangle) \right\},$ where $\boldsymbol{x}_{t,\star} := \arg \max_{\boldsymbol{x} \in \mathcal{X}_t} \mu(\langle \boldsymbol{x}, \boldsymbol{\theta}_{\star} \rangle).$

 $\mathcal{E}_t(\delta) := \Big\{\boldsymbol{\theta} \in \Theta : \Big\|$ $\left\|\bm{\theta}-\bm{\theta}_t\right\|$ $\begin{array}{c} \hline \end{array}$ $\mathop{\parallel}$ \prod 2 $\nabla^2 \mathcal{L}_t(\widehat{\boldsymbol{\theta}}_t) + \frac{1+SR_s}{2S^2}$ $\frac{+SK_{\cal S}}{2S^2}\boldsymbol{I}_d$ $\leq \gamma_t(\delta)^2$ *,* (6) where $\gamma_t(\delta)^2 := 2(1 + SR_s)(1 + \beta_t(\delta)^2)$.

Proof sketch. This is a standard recipe using Ville's inequality and Donsker-Varadhan variational representation of KL; see [Chugg et al. \[2023\]](#page-0-4) for relevant references.

2. Novel choice of \mathbb{Q} and \mathbb{P}_t . For $c \in (0, 1]$ to be determined later, we set $\mathbb{Q} = \text{Unif}(\Theta), \quad \mathbb{P}_t = \text{Unif}(\tilde{\Theta}_t \triangleq (1-c)\hat{\theta}_t + c\Theta),$ (8) where $\boldsymbol{a} + \Theta = \{ \boldsymbol{a} + \boldsymbol{\theta} : \boldsymbol{\theta} \in \Theta \}$ for a vector $\boldsymbol{a} \in \mathbb{R}^d$.

These can scale *exponentially in S* (e.g., Bernoulli)!

 $KL(\mathbb{P}_t || \mathbb{Q}) = \log$ $\text{vol}(\Theta)$ $\text{vol}(\Theta)$ $= d \log$ 1 *c .*

3. Lipschitzness of $\mathcal{L}_t(\cdot)$ **.** We also have that

 $\mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}_t} [\mathcal{L}_t(\boldsymbol{\theta})] = \mathcal{L}_t(\widehat{\boldsymbol{\theta}}_t) + \mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}_t} [\mathcal{L}_t(\boldsymbol{\theta}) - \mathcal{L}_t(\widehat{\boldsymbol{\theta}}_t)] \leq \mathcal{L}_t(\widehat{\boldsymbol{\theta}}_t) + 2SL_t c,$ where the last inequality follows from the Lipschitzness of $\mathcal{L}_t(\cdot)$ and the observation that for $\boldsymbol{\theta} = (1 - c)\widehat{\boldsymbol{\theta}}_t + c\widetilde{\boldsymbol{\theta}} \in \widetilde{\Theta}_t$ and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\begin{array}{c} \hline \end{array}$ $\left\|\tilde{\boldsymbol{\theta}}-\widehat{\boldsymbol{\theta}}_t\right\|$ $\left\|\bm{\theta}-\bm{\theta}_t\right\|$ \leq 2*Sc*. We conclude by choosing min- $= c$ \parallel $\frac{1}{2}$ \mathbb{I} \parallel \parallel imizing over $c \in (0,1]$. The expression in Theorem 3.1 follows from $c = 1 \wedge \frac{d}{2S}$ *.* $2SL_t$

d $\frac{1}{2}$ *T/κ⋆*(*T*)-type regret has been obtained for bounded **GLB**s in a concurrent work of [Sawarni et al. \[2024\]](#page-0-2), but they make use of explicit warmup and consider limited adaptivity setting.

Question #2

A Unified CS for GLMs

 \rightarrow Remark. *Such choices of* Q and \mathbb{P}_t *have been considered previously in universal portfolios [\[Blum and Kalai, 1999\]](#page-0-5) and fast rates in online learning [\[Foster et al., 2018\]](#page-0-6). This is the first time such a translated/shrunken posterior has been used in the PAC-Bayes context.*

 \rightarrow Remark. Nontrivial technical contributions, including a new optimistic upper bound of regret, self-concordant control, etc.

 $\bm{\mathrm{Linear}}$ bandits. $\mathcal{O}(\sigma d)$ √ *T*)

 \rightarrow matches prior state-of-the-art [\[Flynn et al., 2023\]](#page-0-8) $\textbf{Logistic bandits.} \; \widetilde{\mathcal{O}}(d\sqrt{d})$ $T/\kappa_*(T) + d^2\kappa(T))$ \rightarrow first poly(*S*)-free regret with *purely optimistic approach*, improves upon OFULog+ of [Lee et al. \[2024\]](#page-0-3)! ${\bf Poisson~bandits.}~\widetilde{\cal O}(dS\sqrt{2})$ $T/\kappa_*(T) + d^2 e^{2S} \kappa(T)$ \rightarrow first regret guarantee!

$$
\mathcal{L}_t(\boldsymbol{\theta}) := \sum_{s=1}^{t-1} \left\{ \ell_s(\boldsymbol{\theta}) \stackrel{\Delta}{=} \frac{-r_s \langle \boldsymbol{x}_s, \boldsymbol{\theta} \rangle + m(\langle \boldsymbol{x}_s, \boldsymbol{\theta} \rangle)}{g(\tau)} \right\}, \quad (3)
$$

$$
\widehat{\boldsymbol{\theta}}_t := \underset{\boldsymbol{\theta} \in \Theta}{\arg \min} \mathcal{L}_t(\boldsymbol{\theta}). \quad (4)
$$

For this class of GLMs, we have a slightly relaxed *ellipsoidal* CS:

)

→ Remark. *This is easier to implement in practice, and for bandits, this amounts to a closed-form bonus in UCB.*

Proof via PAC-Bayes with Uniform Prior/Posterior

1. PAC-Bayesian Time-Uniform Bound.

Lemma 3.3. For any data-independent prior Q and any sequence of adapted posterior distributions $\{\mathbb{P}_t\}$, the following holds: for any $\delta \in (0,1)$, $\mathbb{P}\left(\exists t \geq 1 : \mathcal{L}_t(\boldsymbol{\theta_\star}) - \mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}_t}[\mathcal{L}_t(\boldsymbol{\theta})] \geq \log_2 \left(\frac{ \log t}{\epsilon} \right)$ 1 *δ* $+$ KL(\mathbb{P}_t ||Q) $\Big)$ $\leq \delta$.

(7)

bound with probability at least $1 - \delta$:

D Obtain $\boldsymbol{\theta}_t$ (Eqn. [\(4\)](#page-0-7)) and $\mathcal{C}_t(\delta)$ (Theorem 3.1)

3 Play x_t , then observe/receive a reward $r_t \in \{0, 1\}$.

Then, we have

OFUGLB

OFUGLB is of the following form:

We then have the following *state-of-the-art* regret bound:

Theorem 4.1. OFUGLB attains the following regret

2 Solve $(\bm{x}_t, \bm{\theta}_t) = \argmax_{\bm{x} \in \mathcal{X}_t, \bm{\theta} \in \mathcal{C}_t(\delta)} \mu(\langle \bm{x}, \bm{\theta} \rangle)$

$$
\operatorname{Reg}^B(T) \lesssim_{\delta} d \sqrt{\frac{g(\tau)T}{\kappa_{\star}(T)}} + d^2 R_S R_{\mu} \sqrt{g(\tau)} \kappa(T),
$$

where $R_{\mu} := \max_{\mathbf{x} \in \mathcal{X}_{[T]}, \theta \in \Theta} \mu(\langle \mathbf{x}, \theta \rangle).$

Experiments for Logistic Bandits

μ is the **inverse link** (mean) function.

Future Directions

• Extension to kernelized/functional GLMs? • Implications to RLHF; see e.g., [Das et al. \[2024\]](#page-0-9). • Arm-set geometry-dependent transient term for **GLB**s

• Regret lower bound of general **GLB**s

References

A. Blum and A. Kalai. Universal Portfolios With and Without Transaction Costs. *Machine Learning*, 35(3):193–205, 1999.

B. Chugg et al. A Unified Recipe for Deriving (Time-Uniform) PAC-Bayes Bounds. *Journal of Machine Learning Research*, 24(372):1–61, 2023. N. Das et al. Provably Sample Efficient RLHF via Active Preference Opti-

mization. *arXiv preprint arXiv:2402.10500*, 2024.

S. Filippi et al. Parametric Bandits: The Generalized Linear Case. In *NIPS*, 2010.

H. Flynn et al. Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures. In *NeurIPS*, 2023.

D. J. Foster et al. Logistic Regression: The Importance of Being Improper. In *COLT*, 2018.

J. Lee et al. Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion. In *AISTATS*, 2024.

A. Sawarni et al. Optimal Regret with Limited Adaptivity for Generalized Linear Contextual Bandits. *arXiv preprint arXiv:2404.06831*, 2024.