
Preliminary Evaluation of SWAY in Permutation 
Decision Space via a Novel Euclidean 

Embedding
Junghyun Lee*, Chani Jung*, Yoo Hwa Park*, Dongmin Lee*, Juyeon Yoon, Shin Yoo

KAIST
(* equal contribution)

Paper: https://link.springer.com/chapter/10.1007/978-3-030-88106-1_3
Github: https://github.com/chanijung/sway-perm 

https://link.springer.com/chapter/10.1007/978-3-030-88106-1_3
https://github.com/chanijung/sway-perm


Introduction

• SBSE often deals with optimisation of fitness function over some 
decision space:

𝑜 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑑
• 𝑑 ∈ 𝐷: decision variable(space)
• o ∈ 𝑂: objective variable (space)

• However, population-based metaheuristics often require large 
number of evaluations.

• Moreover, each fitness evaluation is accompanied by the cost of the 
actual execution, which may be huge.



Sampling-based Approach

• Key observation:
There exists a close association between 𝐷 and 𝑂

• How to use above observation to reduce the number of fitness eval?

Cluster the candidates by their decisions instead of their objectives

• Based on this intuition, Chen et al. [1] proposed SWAY (the Sampling 
Way), a FastMAP-type sampling algorithm.



Continuous SWAY

Main routine Sub-routine (Split)



Continuous SWAY

Main routine Sub-routine (Split)



Continuous SWAY

Main routine Sub-routine (Split)



Split

westItems

eastItems



Continuous SWAY

Main routine Sub-routine (Split)



Some Remarks on SWAY

• Continuous SWAY is heavily dependent on the well-definedness of 
inner product and distances
• i.e. ”continuity” of the decision space

• SWAY was extended to binary case in the same work by Chen et al. 
(not included here)



Permutation Decision Space

• Many of the SE problems, however, involve non-binary discrete 
decision space.

• One particular case is the permutation decision space in which each 
decision is a permutation!

• Examples: Test Case Prioritisation, Traveling Salesperson Problem



SWAY for Permutation Decision Space?

• How to apply SWAY to permutation decision space?

• Coarse-grained binary grouping, then apply binary SWAY? (Chen et 
al., 2019)
• It is not clear what coarse-grained groupings can be used in a permutative 

decision space without knowing which ordering is better than others!

• New embedding of permutations, then apply continuous SWAY? (this 
work)
• The embedding scheme must preserve some combinatorial distance between 

permutations



Swap distance between permutations

• Objective value of candidate solutions is heavily dependent on the 
relative orderings in the permutation

𝑡!	𝑡"	𝑡# 	… 𝑡!$$	𝑡!$!…𝑡!$$$

𝑡!	𝑡"	𝑡# 	… 𝑡!$!	𝑡!$$…𝑡!$$$

𝑡!	𝑡"	𝑡# 	… 𝑡!$$$	𝑡!$!…𝑡!$$

: Only two test cases are effected
à  Little effect on the early fault detection

: All the succeeding test cases are effected
à (Possibly) Huge effect on the early fault detection



Swap distance between permutations

Find some Euclidean embedding of permutations that best preserves 
the swap distance!



Naïve embedding?

• Consider a very naïve embedding: given some permutation 𝜋 ∈ 𝑆!, its 
embedding is given as 

(𝜋 1 , 𝜋 2 , … , 𝜋(𝑛)) ∈ ℝ!

• If we collect the embedded points of all possible permutations, we 
get a polytope called permutahedron



Naïve embedding?

• Permutahedron has many desirable properties:

• : the Split function in Algorithm 1 does not show any unexpected behaviour.

• : seems to indicate a positive correlation between the Euclidean distance of 
embeddings and the swap distance

• So why not just use the naïve embedding??



Naïve embedding?

• Turns out, such seemingly true property is false:



Statistical Ranking 101: rank permutation



Statistical Ranking 101: rank permutation

• Let us go over an example for a clearer understanding!
• Consider 𝜋 = 2	3	4	1	6	5 ∈ 𝑆$

• We can consider a linear order < ′ induced by 𝜋, defined as follows:
2 <% 3 <% 4 <% 1 <% 6 <% 5

• Now, let us consider the ranking of each number under < ′
• 1 is the 4th ranking element, 2 is the 1st ranking element…etc.

• Putting the ranks into a single vector gives the rank permutation:
𝑟 𝜋 = (4	1	2	3	6	5) ∈ 𝑆$



Statistical Ranking 101: Spearman rho

• Using rank permutation, another distance between permutations can 
be considered:



Rank-based embedding to the rescue!

• Our embedding scheme is based upon the following non-trivial result 
that relates Kendall tau with Spearman rho:

If the effect of 𝑑"  is insignificant with respect to 𝑑#$ and 𝑛𝑑% , then 
there is a positive correlation between 𝑑# and 𝑑% .

i.e. we can embed 𝜋 as its rank permutation vector:



Rank-based embedding to the rescue!

• And indeed, an almost linear relationship can be observed!



Proof-of-concept: TCP

• Let us check the quality of our embeddings by seeing whether 
applying continuous SWAY gives comparable performance!

• We consider the task of Test Case Prioritisation (TCP)
• Find the optimal ordering of the test cases such that “early fault detection” is 

maximized

• This is proof-of-concept, and thus we do not aim to evaluate SWAY 
itself for TCP problem!



Performance metrics

• Average Percentage of Statement Coverage (APSC)

• Average Percentage of Fault Detection (APFD)



Benchmarks

• Four Unix utilities (from SIR repository)
• flex (4 versions), gzip (3 versions), grep (2 versions), sed (1 version)

• Individual test cases that resulted in segmentation fault in our test environment have 
been filtered out, resulting in smaller test suites than those reported in SIR.

• This does not interfere with the feasibility evaluation of our embedding.



Algorithms

• Baseline: additional greedy algorithm
• Widely used in regression testing literature
• Simple yet efficient

• SWAY for TCP (“Permutative SWAY”)
• Embed the permutations, then run continuous SWAY
• Initial population: randomly sample permutations (fixed as 2&')
• Stopping population: sufficiently low value (fixed as 5)



RQ1. Efficacy of Permutative SWAY



RQ1. Efficacy of Permutative SWAY



RQ1. Efficacy of Permutative SWAY

• Greedy outperforms SWAY on APSC in general
• This is expected since greedy directly (and deterministically) maximizes APSC. 

• SWAY and greedy algorithm are more at par in terms of APFD
• For some programs, SWAY outperforms greedy in statistically significant 

manner. 

• RQ1. SWAY can produce comparable results to those of the additional 
greedy algorithm when applied to the TCP problem using the 
proposed embedding.



RQ2. Sensitivity to Initial Population Size



RQ2. Sensitivity to Initial Population Size



RQ2. Sensitivity to Initial Population Size

• Both APSC and APFD show monotonically increasing trends as the 
size of the initial population increases.
• The correlation is stronger with APSC

• Note that further increasing the initial population after certain 
threshold does not seem to have a significant effect on APFD.

• RQ2. Above certain size, SWAY is not overtly sensitive to the size of 
the initial population.



Contributions

• A novel Euclidean embedding of permutations, allowing for a direct 
use of continuous SWAY for permutation decision space

• Theoretically well-founded motivation for our embedding scheme
• Combinatorics, statistical ranking theory

• A proof-of-concept empirical evaluation using TCP



Future works

• Code optimisation and more experiments to further confirm the efficacy.

• Make the current framework more scalable to even huge initial population, 
as well as the size of the permutation (e.g. number of test cases)
• ex. Dimensionality reduction, stochastic modification (batching)

• Pseudo-random sampling of the initial permutations to reduce variance?
• Low-discrepancy sequences (ex. Sobol sequence)

• The clustering used here is very simple.
• Deep representation learning to discover underlying complex patterns may result in 

better quality embeddings. (ex. Autoencoders, deep clustering…)


