
Preliminary Evaluation of SWAY in Permutation 
Decision Space via a Novel Euclidean 

Embedding
Junghyun Lee*, Chani Jung*, Yoo Hwa Park*, Dongmin Lee*, Juyeon Yoon, Shin Yoo

KAIST
(* equal contribution)

Paper: https://link.springer.com/chapter/10.1007/978-3-030-88106-1_3
Github: https://github.com/chanijung/sway-perm 

https://link.springer.com/chapter/10.1007/978-3-030-88106-1_3
https://github.com/chanijung/sway-perm


Introduction

• SBSE often deals with optimisation of fitness function over some 
decision space:

𝑜 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑑
• 𝑑 ∈ 𝐷: decision variable(space)
• o ∈ 𝑂: objective variable (space)

• However, population-based metaheuristics often require large 
number of evaluations.

• Moreover, each fitness evaluation is accompanied by the cost of the 
actual execution, which may be huge.



Sampling-based Approach

• Key observation:
There exists a close association between 𝐷 and 𝑂

• How to use above observation to reduce the number of fitness eval?

Cluster the candidates by their decisions instead of their objectives

• Based on this intuition, Chen et al. [1] proposed SWAY (the Sampling 
Way), a FastMAP-type sampling algorithm.
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Continuous SWAY

Main routine Sub-routine (Split)



Some Remarks on SWAY

• Continuous SWAY is heavily dependent on the well-definedness of 
inner product and distances
• i.e. ”continuity” of the decision space

• SWAY was extended to binary case in the same work by Chen et al. 
(not included here)



Permutation Decision Space

• Many of the SE problems, however, involve non-binary discrete 
decision space.

• One particular case is the permutation decision space in which each 
decision is a permutation!

• Examples: Test Case Prioritisation, Traveling Salesperson Problem



SWAY for Permutation Decision Space?

• How to apply SWAY to permutation decision space?

• Coarse-grained binary grouping, then apply binary SWAY? (Chen et 
al., 2019)
• It is not clear what coarse-grained groupings can be used in a permutative 

decision space without knowing which ordering is better than others!

• New embedding of permutations, then apply continuous SWAY? (this 
work)
• The embedding scheme must preserve some combinatorial distance between 

permutations



Swap distance between permutations

• Objective value of candidate solutions is heavily dependent on the 
relative orderings in the permutation

𝑡!	𝑡"	𝑡# 	… 𝑡!$$	𝑡!$!…𝑡!$$$

𝑡!	𝑡"	𝑡# 	… 𝑡!$!	𝑡!$$…𝑡!$$$

𝑡!	𝑡"	𝑡# 	… 𝑡!$$$	𝑡!$!…𝑡!$$

: Only two test cases are effected
à  Little effect on the early fault detection

: All the succeeding test cases are effected
à (Possibly) Huge effect on the early fault detection



Swap distance between permutations

Find some Euclidean embedding of permutations that best preserves 
the swap distance!



Naïve embedding?

• Consider a very naïve embedding: given some permutation 𝜋 ∈ 𝑆!, its 
embedding is given as 

(𝜋 1 , 𝜋 2 , … , 𝜋(𝑛)) ∈ ℝ!

• If we collect the embedded points of all possible permutations, we 
get a polytope called permutahedron



Naïve embedding?

• Permutahedron has many desirable properties:

• : the Split function in Algorithm 1 does not show any unexpected behaviour.

• : seems to indicate a positive correlation between the Euclidean distance of 
embeddings and the swap distance

• So why not just use the naïve embedding??



Naïve embedding?

• Turns out, such seemingly true property is false:



Statistical Ranking 101: rank permutation



Statistical Ranking 101: rank permutation

• Let us go over an example for a clearer understanding!
• Consider 𝜋 = 2	3	4	1	6	5 ∈ 𝑆$

• We can consider a linear order < ′ induced by 𝜋, defined as follows:
2 <% 3 <% 4 <% 1 <% 6 <% 5

• Now, let us consider the ranking of each number under < ′
• 1 is the 4th ranking element, 2 is the 1st ranking element…etc.

• Putting the ranks into a single vector gives the rank permutation:
𝑟 𝜋 = (4	1	2	3	6	5) ∈ 𝑆$



Statistical Ranking 101: Spearman rho

• Using rank permutation, another distance between permutations can 
be considered:



Rank-based embedding to the rescue!

• Our embedding scheme is based upon the following non-trivial result 
that relates Kendall tau with Spearman rho:

If the effect of 𝑑"  is insignificant with respect to 𝑑#$ and 𝑛𝑑% , then 
there is a positive correlation between 𝑑# and 𝑑% .

i.e. we can embed 𝜋 as its rank permutation vector:



Rank-based embedding to the rescue!

• And indeed, an almost linear relationship can be observed!



Proof-of-concept: TCP

• Let us check the quality of our embeddings by seeing whether 
applying continuous SWAY gives comparable performance!

• We consider the task of Test Case Prioritisation (TCP)
• Find the optimal ordering of the test cases such that “early fault detection” is 

maximized

• This is proof-of-concept, and thus we do not aim to evaluate SWAY 
itself for TCP problem!



Performance metrics

• Average Percentage of Statement Coverage (APSC)

• Average Percentage of Fault Detection (APFD)



Benchmarks

• Four Unix utilities (from SIR repository)
• flex (4 versions), gzip (3 versions), grep (2 versions), sed (1 version)

• Individual test cases that resulted in segmentation fault in our test environment have 
been filtered out, resulting in smaller test suites than those reported in SIR.

• This does not interfere with the feasibility evaluation of our embedding.



Algorithms

• Baseline: additional greedy algorithm
• Widely used in regression testing literature
• Simple yet efficient

• SWAY for TCP (“Permutative SWAY”)
• Embed the permutations, then run continuous SWAY
• Initial population: randomly sample permutations (fixed as 2&')
• Stopping population: sufficiently low value (fixed as 5)



RQ1. Efficacy of Permutative SWAY
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RQ1. Efficacy of Permutative SWAY

• Greedy outperforms SWAY on APSC in general
• This is expected since greedy directly (and deterministically) maximizes APSC. 

• SWAY and greedy algorithm are more at par in terms of APFD
• For some programs, SWAY outperforms greedy in statistically significant 

manner. 

• RQ1. SWAY can produce comparable results to those of the additional 
greedy algorithm when applied to the TCP problem using the 
proposed embedding.



RQ2. Sensitivity to Initial Population Size
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RQ2. Sensitivity to Initial Population Size

• Both APSC and APFD show monotonically increasing trends as the 
size of the initial population increases.
• The correlation is stronger with APSC

• Note that further increasing the initial population after certain 
threshold does not seem to have a significant effect on APFD.

• RQ2. Above certain size, SWAY is not overtly sensitive to the size of 
the initial population.



Contributions

• A novel Euclidean embedding of permutations, allowing for a direct 
use of continuous SWAY for permutation decision space

• Theoretically well-founded motivation for our embedding scheme
• Combinatorics, statistical ranking theory

• A proof-of-concept empirical evaluation using TCP



Future works

• Code optimisation and more experiments to further confirm the efficacy.

• Make the current framework more scalable to even huge initial population, 
as well as the size of the permutation (e.g. number of test cases)
• ex. Dimensionality reduction, stochastic modification (batching)

• Pseudo-random sampling of the initial permutations to reduce variance?
• Low-discrepancy sequences (ex. Sobol sequence)

• The clustering used here is very simple.
• Deep representation learning to discover underlying complex patterns may result in 

better quality embeddings. (ex. Autoencoders, deep clustering…)


