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Markov Decision Process (MDP)

Setting

• S: finite state space with |S| = S .

• A: finite action space with |A| = A.

• P(s ′ | s, a): probability of transitioning to state s ′ from state s when the
chosen action is a.

• r(s, a): reward from choosing action a at state s

• π(a | s): policy, given by the probability of taking action a at state s
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Markov Decision Process (MDP)

Finite-Horizon MDP

• Fixed initial state (or a fixed distribution of the initial state).

• H: the finite length of the horizon.

• Starting from the initial state s1, given state sh in step h, take action ah
and observe the next state sh+1.

• Cumulative reward:
H∑

h=1

r(sh, ah).

• Optimal policy:

π∗ ∈ argmaxπ

{
E

[
H∑

h=1

r (sπh , a
π
h )

]}
.
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Markov Decision Process (MDP)

Infinite-Horizon Average-Reward MDP

• Starting from the initial state s1, given state st in time t, take action at
and observe the next state st+1.

• Average reward:

lim
T→∞

1

T
· E

[
T∑
t=1

r(st , at)

]
.

• Optimal policy:

π∗ ∈ argmaxπ

{
lim

T→∞

1

T
· E

[
T∑
t=1

r (sπt , a
π
t )

]}
.
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Reinforcement Learning for MDP

• We assume that the reward function r(s, a) is known.

• If the transition probability P(s ′ | s, a) is known, we can efficiently
compute an optimal policy for both finite- and infinite- horizon MDPs.

• If not, we apply reinforcement learning to learn near-optimal policies.

• Basic idea:

trajectory {s1, a1, . . . , st , at} up to step t

→ policy πt+1 for step t + 1
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Reinforcement Learning for MDP

Finite-Horizon Episodic Reinforcement Learning

• Run the finite-horizon MDP multiple times: episodes.

• For episode k, we prepare πk = {πk
h}Hh=1, a collection of policies over the

H-horizon.

• After episode k, we observe trajectory

{
s1, a

πk
1

1 , s
πk
1

2 , a
πk
2

2 , . . . , s
πk
H−1

H , a
πk
H

H

}
.

• Based on the trajectories over the first k episodes, we construct πk+1.

• Total cumulative reward:

K∑
k=1

H∑
h=1

r
(
sπ

k

h , aπ
k

h

)
.

• Regret:

K
H∑

h=1

r (s∗h , a
∗
h )︸ ︷︷ ︸

total cumulative reward under an optimal policy

−
K∑

k=1

H∑
h=1

r
(
sπ

k

h , aπ
k

h

)
.
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Reinforcement Learning for MDP

Reinforcement Learning for Infinite-Horizon Average-Reward MDP

• At state st for time step t, prepare a policy πt .

• Take action at from policy πt & Observe the next state st+1.

• Total cumulative reward over T steps:

T∑
t=1

r (st , at) .

• Regret:

T ·max
π

{
lim

T→∞

1

T
· E

[
T∑
t=1

r (sπt , a
π
t )

]}
︸ ︷︷ ︸

optimal average reward

−
T∑
t=1

r (st , at)
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Model-Based RL

• We may compute a policy based on an estimation of P(s ′ | s, a).

• Tabular RL: Learn the probability P(s ′ | s, a) for each
(s, a, s ′) ∈ S ×A× S.

• Finite-horizon episodic case: assuming non-stationary transitions, i.e.,
P1,P2, . . . ,PH−1,

UCRL [Jaksch et al., 2010] Õ(H3/2S
√
AK)

UCBVI [Azar et al., 2017] Õ(H3/2
√
SAK)

Regret Lower Bound [Jin et al., 2018] Ω(H3/2
√
SAK)
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√
SAK)

Regret Lower Bound [Jin et al., 2018] Ω(H3/2
√
SAK)

9/34



Model-Based RL

• We may compute a policy based on an estimation of P(s ′ | s, a).

• Tabular RL: Learn the probability P(s ′ | s, a) for each
(s, a, s ′) ∈ S ×A× S.

• Finite-horizon episodic case: assuming non-stationary transitions, i.e.,
P1,P2, . . . ,PH−1,

UCRL [Jaksch et al., 2010] Õ(H3/2S
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Model-Based RL

Infinite-Horizon Tabular MDP

• Not all MDPs are learnable!

• Communicating MDPs: MDPs with bounded diameter

D︸︷︷︸
diameter of an MDP M

= max
s 6=s′∈S

min
π:S→A

E

 T (s ′ | M, π, s)︸ ︷︷ ︸
travel time from s to s′

 .
• Weakly communicating MDPs: state space S has a set of communicating

states, and the others are transient states.

• A weakly communicating MDP satisfies that sp(v∗) is bounded where
sp(v∗) is the span of the optimal associated bias function.

• For communicating MDPs, sp(v∗) ≤ D.
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Model-Based RL

Infinite-Horizon Tabular MDP

• Regret:

UCRL2 [Jaksch et al., 2010] Õ(DS
√
AT )

Thompson Sampling [Agrawal and Jia, 2017] Õ(D
√
SAT )

REGAL.D [Bartlett and Tewari, 2009] Õ(sp(v∗)S
√
AT )

EBF [Zhang and Ji, 2019] Õ(
√

sp(v∗)SAT )

Regret Lower Bound [Jaksch et al., 2010] Ω(
√
DSAT )
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RL with Function Approximation

• For tabular MDPs, regret lower bounds are

Finite-horizon [Jin et al., 2018] Ω(H3/2
√
SAK)

Infinite-horizon [Jaksch et al., 2010] Ω(
√
DSAT )

• When the state space S or the action space A is large, the regret is large.

• A resolution is to approximate the transition model P(s ′ | s, a) by a
function class, e.g., neural networks.

• Applications (of mostly neural function approximation):
Atari games [Mnih et al., 2015], Go [Silver et al., 2017], robotics [Kober
et al., 2013], and autonomous driving [Yurtsever et al., 2020].

• Question: does some function structure lead to a smaller regret bound?
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RL with Linear Function Approximation

Linear MDP

• There is a known feature mapping ϕ : S ×A → Rd .

• There is an unknown parameter function θ : S → Rd .

• Assume that the transition probability is given by

P(s ′ | s, a) = ϕ(s, a)>θ(s ′).

• We are interested in the regime where the dimension d is small.

• Model-based RL boils down to learning the unknown parameter function
θ(s ′).
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RL with Linear Function Approximation

Linear Mixture MDP

• There is a known feature mapping ϕ : S ×A× S → Rd .

• There is an unknown parameter θ ∈ Rd .

• Assume that the transition probability is given by

P(s ′ | s, a) = ϕ(s, a, s ′)>θ.

• We are interested in the regime where the dimension d is small.

• Model-based RL boils down to learning the unknown parameter θ.
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RL with Linear Function Approximation

Regret for Linear MDP

Finite-Horizon Upper Bound
Õ(dH3/2

√
K)

[Agarwal et al., 2023, He et al., 2023, Hu et al., 2022]

Finite-Horizon Lower Bound [Zhou et al., 2021] Ω(dH3/2
√
K)

Infinite-Horizon Upper Bound [Hong et al., 2024] Õ(d3/2sp(v∗)
√
T )

Infinite-Horizon Lower Bound [Wu et al., 2022] Ω(d
√
DT )
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RL with Linear Function Approximation

Regret for Linear Mixture MDP

Finite-Horizon Upper Bound [Zhou et al., 2021] Õ(dH3/2
√
K)
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RL with Non-Linear Function Approximation

• Perhaps, the linearity assumption is too restrictive.

• It is not always clear how to impose 0 ≤ P(s ′ | s, a) ≤ 1 for the linear case.

• The underlying model function can be non-linear.
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RL with Non-Linear Function Approximation

General Function Approximation

• One way to consider non-linear functions that are still not too complex is
to define a structural complexity measure.

• Then we may focus on functions that have a small value with respect to a
given measure.

• Eluder dimension [Wang et al., 2020].

• Bellman eluder dimension [Jin et al., 2021].

• Bilinear class [Du et al., 2021].

• Decision-estimation coefficient [Foster et al., 2023].

• Generalized eluder coefficient [Zhong et al., 2023].

• Issue 1: requires solving an abstract optimization / regression problem.

• Issue 2: no lower bound.
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RL with Multinomial Logistic Function Approximation

• [Hwang and Oh, 2023] proposed the multinomial logistic (MNL) function
approximation framework.

• As the linear mixture MDP, there is a known feature mapping
ϕ : S ×A× S → Rd .

• Moreover, there is an unknown parameter θ∗ ∈ Rd .

• Assume that the transition probability is given by

P(s ′ | s, a) =
exp

(
ϕ(s, a, s ′)>θ∗

)∑
s′′∈S exp (ϕ(s, a, s ′′)>θ∗)

.

• Again, we are interested in the regime where the dimension d is small.

• Advantage: the MNL framework is natural for modeling transition
probabilities.
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RL with Multinomial Logistic Function Approximation

Regret Bounds for RL with MNL transitions

• Assumption: there exists 0 < κ < 1 such that for all (s, a) ∈ S ×A and
s ′, s ′′ ∈ S, we have

inf
θ∈Rd

P(s ′ | s, a, θ)P(s ′′ | s, a, θ) ≥ κ.

• Let 0 < κ∗ < 1 satisfy that for all (s, a) ∈ S ×A and s ′, s ′′ ∈ S, we have

P(s ′ | s, a, θ∗)P(s ′′ | s, a, θ∗) ≥ κ∗.

• Regret:

UCRL-MNL [Hwang and Oh, 2023] Õ(κ−1dH2
√
K)

UCRL-MNL-LL+ [Li et al., 2024] Õ(dH2
√
K + κ−1d2H2)

UCRL-MNL+ [Cho et al., 2024] Õ(dH2
√
K + κ−1d2H2)

Regret Lower Bound [Li et al., 2024] Ω(dH
√
Kκ∗)
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√
K)

UCRL-MNL-LL+ [Li et al., 2024] Õ(dH2
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Our Result 1: Tighter Lower Bound

Theorem

There is an MDP M with K ≥ {(d − 1)2H/2,H3(d − 1)2/32}, d ≥ 2, and
H ≥ 3 for which any algorithm A incurs a regret at least

E [regret(M,A,K)] ≥ (d − 1)H3/2
√
K

480
√

2

where the expectation is taken over the randomness generated by M and A.
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Our Result 2: Algorithms for Infinite-Horizon Average-Reward Setting

Theorem

Let M be a communicating MDP governed by the MNL transition model, and
let D denote the diameter of M. There is an algorithm, called UCRL2-MNL, that
guarantees that for any initial state s1,

Regret(M, UCRL2-MNL, s1,T ) = Õ
(
κ−1Dd

√
T
)

with probability at least 1− 2δ.

• UCRL2-MNL is an adaptation of UCRL2 due to [Jaksch et al., 2010].

• The main component is running extended value iteration.
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(
κ−2/5sp(v∗)d2/5T 4/5

)
with probability at least 1− 2δ.

• OVIFH-MNL decomposes the T -horizon to T/H episodes of length H.

• For each episode, we apply UCRL-MNL [Hwang and Oh, 2023].

23/34



Our Result 2: Algorithms for Infinite-Horizon Average-Reward Setting

Theorem

Let M be a weakly communicating MDP governed by the MNL transition
model, and let sp(v∗) denote the span of the associated optimal bias function.
There is an algorithm, called OVIFH-MNL, that guarantees that for any initial
state s1,

Regret(M, OVIFH-MNL, s1,T ) = Õ
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Our Result 3: Strong Lower Bound for Learning Communicating MDPs

Theorem

There is an MDP instance M with d ≥ 2, D ≥ 101, and T ≥ 45(d − 1)2D for
which any algorithm A incurs a regret at least

E [regret(M,A, x0,T )] ≥ 1

4050
d
√
DT

where the expectation is taken over the randomness generated by M and A.
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Summary

• Tighter lower bound for the finite-horizon setting:

Ω(dH3/2
√
K)

improves upon the lower bound Ω(dH
√
Kκ∗) due to [Li et al., 2024].

• UCRL2-MNL for the infinite-horizon average-reward setting with regret

Õ(dD
√
T )

for communicating MDPs with diameter at most D.

• OVIFH-MNL for the infinite-horizon average-reward setting with regret

Õ
(
κ−2/5sp(v∗)d2/5T 4/5

)
for weakly communicating MDPs.

• Lower bound for the finite-horizon setting:

Ω(d
√
DT ).
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Confidence Sets for the Transition Parameter

• Log-likelihood function:

`t(θ) =
t−1∑
i=1

∑
s′∈Ssi ,ai

yi,s′ log pi (s
′, θ).

• Ridge-penalized MLE:

θ̂t = argmaxθ

{
`t(θ)− λ

2
‖θ‖22

}
.

• Gram matrix:

At+1 := λId +
t∑

i=1

∑
s′∈Ssi ,ai

ϕi,s′ϕ
>
i,s′ = At +

∑
s′∈Sst ,at

ϕt,s′ϕ
>
t,s′
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Confidence Sets for the Transition Parameter

• Confidence sets:

Ct :=

{
θ ∈ Rd :

∥∥∥θ − θ̂t∥∥∥
At

≤ βt
}

where

βt =
1

κ

√
d log

(
1 +

tUL2
ϕ

dλ

)
+ 2 log

1

δ
+

√
λ

κ
Lθ

and U = max(s,a)∈S×A |Ss,a|.

Lemma

With probability at least 1− δ, it holds that θ∗ ∈ Ct for all t ∈ [T ].

27/34



Confidence Sets for the Transition Parameter

• Confidence sets:

Ct :=

{
θ ∈ Rd :

∥∥∥θ − θ̂t∥∥∥
At

≤ βt
}

where

βt =
1

κ

√
d log

(
1 +

tUL2
ϕ

dλ

)
+ 2 log

1

δ
+

√
λ

κ
Lθ

and U = max(s,a)∈S×A |Ss,a|.

Lemma

With probability at least 1− δ, it holds that θ∗ ∈ Ct for all t ∈ [T ].

27/34



UCRL2-MNL: Extended Value Iteration

Algorithm 0 Extended Value Iteration (EVI(C,ε))

Inputs: confidence set C, a desired accuracy level ε
Initialize: u(0)(s) = 0 for every s ∈ S and i = 0.

while maxs∈S
{
u(i+1)(s)− u(i)(s)

}
−mins∈S

{
u(i+1)(s)− u(i)(s)

}
> ε do

Set

u(i+1)(s) = max
a∈A

r(s, a) + max
θ∈C

 ∑
s′∈Ss,a

p(s ′ | s, a, θ)u(i)(s ′)




Set i = i + 1
end while
Return u(i)(s) for s ∈ S
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UCRL2-MNL: Greedy Policy

• For s ∈ S,

π(s) = argmaxa∈A

r(s, a) + max
θ∈C

 ∑
s′∈Ss,a

p(s ′ | s, a, θ)u(s ′)


 .
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UCRL2-MNL

Algorithm 1 UCRL2-MNL

Input: feature map ϕ : S × A × S → Rd , confidence level δ ∈ (0, 1), and
parameters λ, Lϕ, Lθ, κ,U
Initialize: t = 1, θ̂1 = 0, A1 = λId , and observe the initial state s1 ∈ S
for episodes k = 1, 2, . . . , do

Set tk = t
Set uk(s) as the output of EVI(Ctk ,ε) for s ∈ S where Ctk
Set wk(s) = uk(s)− (maxs∈S uk(s) + mins∈S uk(s)) /2 for s ∈ S
Take policy πk by setting πk(s) with u = wk and C = Ctk for s ∈ S
while det(At) ≤ 2 det(Atk ) do

Take action at = πk(st) and observe st+1 sampled from p(· | st , at)
Set At+1 = At +

∑
s′∈St ϕt,s′ϕ

>
t,s′

Update t = t + 1
end while

end for
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OVIFH-MNL

• UCRL2-MNL requires solving

max
θ∈C

 ∑
s′∈Ss,a

p(s ′ | s, a, θ)u(s ′)


which is a non-convex optimization problem.

• UCRL2-MNL does not apply to general weakly communicating MDPs.

• Question: can we find a more computationally efficient algorithm that
applies to weakly communicating MDPs?
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OVIFH-MNL

• Idea: decompose the T -horizon to T/H episodes of fixed length H.

• Then apply optimistic value iteration such as UCRL-MNL by [Hwang and
Oh, 2023].

• Optimistic value function:

Q̂k,h(s, a) := r(s, a) +
∑

s′∈Ss,a

p
(
s ′ | s, a, θ̂tk

)
V̂k,h+1(s ′)

+ 2Hβtk max
s′∈Ss,a

‖φ(s, a, s ′)‖
A−1
tk
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OVIFH-MNL

Algorithm 2 OVIFH-MNL

Input: feature map ϕ : S × A × S → Rd , confidence level δ ∈ (0, 1), and
parameters λ, Lϕ, Lθ, κ,U
Initialize: θ̂1 = 0, A1 = λId , and observe the initial state s1 ∈ S
for episodes k = 1, 2, . . . ,T/H do

Set Q̂k,h(s, a) for (s, a, h) ∈ S ×A× [H]
for steps h = 1, . . . ,H do

Set t = (k − 1)H + h

Take action at = argmaxa∈A Q̂k,h(st , a) and observe st+1 sampled from
p(· | st , at)

end for
end for

33/34



Thank you!

A draft is now available online: https://dabeenl.github.io
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