

Noise-Adaptive Confidence Sets for Linear Bandits

Kwang-Sung Jun (전광성) Assistant Professor Department of Computer Science

Joint work with **Jungtaek Kim** (**김정택)** University of Pittsburgh

June 20, 2024

Motivating applications ²

Common challenge: Efficient exploration!

The contextual bandit problem

Theoretical performance measure: Regret ⁴

Key weakness of prior work ⁵

Weakness 1: Requires knowledge of σ_* (or its upper bound) In practice, σ_*^2 is <u>not known</u> \Rightarrow We need to <u>guess</u> it by σ_0^2 .

> Over-specification: $\sigma_0^2 \geq \sigma_*^2 \Rightarrow$ regret $\leq \sigma_0 d\sqrt{T}$ if $\sigma_* \ll \sigma_0$, then far from $\sigma_* d\sqrt{T}$! Under-specification: $\sigma_0^2 \leq \sigma_*^2 \Rightarrow$ regret = $\Theta(T)$

Weakness 2: Assumes the noise level is the same throughout.

In practice, usually not true; i.e., $\sigma_1 \neq \sigma_2 \neq \cdots \neq \sigma_T$.

If
$$
\max_{t=1}^T \sigma_t^2 \le \sigma_0^2
$$
, then $\sigma_0 d\sqrt{T} = d\sqrt{\sum_{t=1}^T \sigma_0^2}$ \Rightarrow can we attain $d\sqrt{\sum_{t=1}^T \sigma_t^2}$?
We made significant progress!

Jun and Kim, "Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization," ICML'24

Contribution 1: Sub-Gaussian noise

- Novel algorithm **LOSAN** (Linear Optimism with Semi-Adaptivity to Noise)
- σ_* : actual noise level.
- σ_0 : specified noise level ($\sigma_0 \ge \sigma_*$).

if $d = 20$, then 4.5x faster convergence!

LOSAN is the first noise-adaptive algorithm for sub-Gaussian noise!

Contribution 2: Bounded noise

- Novel algorithm **LOFAV** (Linear Optimism with Full Adaptivity to Variance)
- $|\eta_t| \leq R$ for some known R; noise variance at time t is σ_t^2 (unknown)

LOFAV is the first practical variance-adaptive algorithm!

*i.e., assume that the noise cannot be a function of the chosen action

7

Numerical results: Sub-Gaussian noise

- Optimizing benchmark functions
- Over-specified setting: $\sigma_* = 0.01, \ \sigma_0 = 1$
- Linear model with random Fourier features (d=128) to mock Gaussian kernel.
- BayesOpt (EI/UCB): Bayesian optimization package BayesO

Numerical results: Bounded noise

- Optimizing benchmark functions
- Noise bound: $R = 1$, Noise variance: $\sigma_t^2 = (0.01)^2$
- Linear model with random Fourier features (d=128) to mock Gaussian kernel.
- BayesOpt (EI/UCB): Bayesian optimization package BayesO

Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise) 10

- Optimistic strategy = use upper confidence bound (UCB) $[Agrawal'95]$
- At time $t=1,...,T$,

Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise) 11

- Define $x_t := \phi(a_t, c_t)$
- OFUL: $\beta_t \approx d\sigma_0^2$
- LOSAN: $\beta_t \approx \sigma_0^2 + \sum_{s=1}^{t-1} (x_s^T \hat{\theta}_{s-1} y_s)^2 ||x_s||_{V_s^{-1}}^2$ If $\hat{\theta}_{s-1} \approx \theta^*$, then $\mathbb{E}[(x_s^\top \theta^* - y_s)^2] \leq \sigma_*^2$ $\sum_{s=1}^{t-1} (x_s^\top \hat{\theta}_{s-1} - y_s)^2 \|x_s\|_{V_s^{-1}}^2 \lessapprox \sigma_*^2 \sum_{s=1}^{t-1} \|x_s\|_{V_s^{-1}}^2$ $\lessapprox \sigma_*^2 d$ by elliptical potential lemma $\lessapprox \sigma_0^2 + d\sigma_*^2$ (by advanced analysis in online learning theory)

• For technical reasons, we turn to **weighted ridge regression** <u>bomnoα</u>
bt equal ality" ${\bf Key\ technique}$ $technical\ ingreen$ f *s*
2 + *Premise Parning → martingale concentr* ∥*xs*∥² "Regret equality" from online learning + martingale concentration

Proof of confidence set ¹²

$$
\hat{\theta}_t
$$
: weighted estimator, $\Sigma_t := \lambda I + \sum_{s=1}^t w_s^2 x_s x_s^\top$, $f(\theta) := \frac{1}{2} w_s^2 (x_s^\top \theta - y_s)^2$

Step 1: "Regret equality" from FTRL (Follow The Regularized Leader)

 $\leq \sigma_*^2 \ln(1/\delta)$ // with high probability $\frac{2}{*}$ ln(1/*δ*) negative (online learning) regret \Longleftrightarrow 1 2 $\|\hat{\theta}_t - \theta^*\|_{\Sigma_t}^2 =$ *λ* 2 $||\theta^*||^2 +$ *t* ∑ *s*=1 $f_s(\hat{\theta}_{s-1})$ || $w_s x_s$ || $\frac{2}{\Sigma_s^{-1}}$ + *t* ∑ *s*=1 $f_s(\theta^*) - f_s(\hat{\theta}_{s-1})$ *t* ∑ *s*=1 $f_s(\hat{\theta}_{s-1}) - f_s(\theta^*) =$ *λ* 2 $\|\theta^*\|^2$ + *t* ∑ *s*=1 $f_s(\hat{\theta}_{s-1})$ || $w_s x_s$ || $^2_{\Sigma_s^{-1}}$ $-\frac{1}{2}$ 2 $\|\hat{\theta}_t - \theta^*\|_{\Sigma_t}^2$ $\leq S^2$ $\leq \sigma_0^2 \ln(1/\delta)$ **Step 2**: Bound with known quantities usually, throw it away except for [Dekel+10]

Algorithm: LOFAV (Linear Optimism with Full Adaptivity to Variance) 13

• Still optimism, but $L = \log_2(T)$ different UCBs

$$
UCB_t(a) = \min_{\ell=1}^L UCB_{t,\ell}(a)
$$

• UCB_{t, ℓ}(*a*): based on weighted ridge regression

$$
\hat{\theta}_{t,\ell} = \min_{\theta} \sum_{s=1}^{t} w_{s,\ell}^{2} (x_{s}^{\top} \theta - y_{s})^{2} + \lambda_{\ell} ||\theta||_{2}^{2} \quad \text{where} \quad w_{s,\ell}^{2} = \min \left\{ 1, \frac{2^{-2\ell}}{||x_{s}||_{V_{s-1}}^{2}} \right\}
$$
\nconfidence\n
$$
\text{confidence}
$$
\n
$$
\text{width}
$$
\n
$$
\text{total width: complex } \& \text{data-dependent}
$$
\n
$$
\text{min } \text{UCB}_{\ell}(x): \text{close approximation}
$$
\n
$$
\ell = 1
$$
\n
$$
\ell = 2
$$
\n
$$
\ell = 3
$$
\n
$$
\ell = 4
$$

Thank you!