

Noise-Adaptive Confidence Sets for Linear Bandits

Kwang-Sung Jun (전광성) Assistant Professor Department of Computer Science

Joint work with **Jungtaek Kim** (김정택) University of Pittsburgh

June 20, 2024

Motivating applications

Common challenge: Efficient exploration!

The contextual bandit problem

For $t = 1,, T$		Product recommendation	Bayesian optimization
• (Optional) Observe a context $c_t \in \mathscr{C}$		user information	N/A
• Take an action $a_t \in \mathscr{A}$		item	point/experiment
• Observe feedback (reward) y_t		click $\in \{0,1\}$	evaluation/measurement
	Goal:	maximize $\sum_{t=1}^{T} y_t$	find $a \in \mathscr{A}$ with largest $\mathbb{E}y_t$
Assumption:	$y_t = f_t^*(a_t) + \eta_t$	– σ_*^2 -sub-Gaussian noise (ze	ro-mean)
	$f_t^*(a_t) = \langle \theta^*, \phi(a_t, c_t) \rangle$	\rangle (can be extended t	o kernels)
	unknown parameter (<i>d</i> -dimensional)	known feature map	

Theoretical performance measure: Regret

Key weakness of prior work

<u>Weakness 1</u>: Requires knowledge of σ_* (or its upper bound) In practice, σ_*^2 is <u>not known</u> \Rightarrow We need to <u>guess</u> it by σ_0^2 .

> Under-specification: $\sigma_0^2 \leq \sigma_*^2 \Rightarrow \text{ regret} = \Theta(T)$ Over-specification: $\sigma_0^2 \geq \sigma_*^2 \Rightarrow \text{ regret} \leq \sigma_0 d\sqrt{T} \leq \text{ If } \sigma_* \ll \sigma_0$, then far from $\sigma_* d\sqrt{T}$!

Weakness 2: Assumes the noise level is the same throughout.

In practice, usually not true; i.e., $\sigma_1 \neq \sigma_2 \neq \cdots \neq \sigma_T$.

If
$$\max_{t=1}^{T} \sigma_t^2 \le \sigma_0^2$$
, then $\sigma_0 d\sqrt{T} = d\sqrt{\sum_{t=1}^{T} \sigma_0^2} \implies$ can we attain $d\sqrt{\sum_{t=1}^{T} \sigma_t^2}$?
We made significant progress!

Jun and Kim, "Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization," ICML'24

Contribution 1: Sub-Gaussian noise

- Novel algorithm **LOSAN** (Linear Optimism with Semi-Adaptivity to Noise)
- σ_* : actual noise level.
- σ_0 : specified noise level ($\sigma_0 \ge \sigma_*$).

if d = 20, then 4.5x faster convergence!

LOSAN is the first noise-adaptive algorithm for sub-Gaussian noise!

Contribution 2: Bounded noise

- Novel algorithm **LOFAV** (Linear Optimism with Full Adaptivity to Variance)
- $|\eta_t| \leq R$ for some known R; noise variance at time t is σ_t^2 (unknown)

LOFAV is the first practical variance-adaptive algorithm!

*i.e., assume that the noise cannot be a function of the chosen action

Numerical results: Sub-Gaussian noise

- Optimizing benchmark functions
- Over-specified setting: $\sigma_* = 0.01, \sigma_0 = 1$
- Linear model with random Fourier features (d=128) to mock Gaussian kernel.
- BayesOpt (EI/UCB): Bayesian optimization package BayesO

Numerical results: Bounded noise

- Optimizing benchmark functions
- Noise bound: R = 1, Noise variance: $\sigma_t^2 = (0.01)^2$
- Linear model with random Fourier features (d=128) to mock Gaussian kernel.
- BayesOpt (EI/UCB): Bayesian optimization package BayesO

Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise)¹⁰

- Optimistic strategy = use upper confidence bound (UCB) [Agrawal'95]
- At time t=1,...,T,

Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise)¹¹

- Define $x_t := \phi(a_t, c_t)$
- OFUL: $\beta_t \approx d\sigma_0^2$
- LOSAN: $\beta_t \approx \sigma_0^2 + \sum_{s=1}^{t-1} \frac{(x_s^\top \hat{\theta}_{s-1} y_s)^2}{||x_s||_{V_s^{-1}}^2}$ (by advanced analysis in online learning theory) If $\hat{\theta}_{s-1} \approx \theta^*$, then $\mathbb{E}[(x_s^\top \theta^* - y_s)^2] \le \sigma_*^2$ $\sum_{s=1}^{t-1} (x_s^\top \hat{\theta}_{s-1} - y_s)^2 ||x_s||_{V_s^{-1}}^2 \lesssim \sigma_*^2 \sum_{s=1}^{t-1} ||x_s||_{V_s^{-1}}^2$ $\lesssim \sigma_*^2 d$ by elliptical potential lemma $\lesssim \sigma_0^2 + d\sigma_*^2$

• For terminal ingredient for β_t : "Regret equality" from online learning + martingale concentration

Proof of confidence set

$$\hat{\theta}_t : \text{weighted estimator, } \Sigma_t := \lambda I + \sum_{s=1}^t w_s^2 x_s x_s^{\mathsf{T}}, \quad f(\theta) := \frac{1}{2} w_s^2 (x_s^{\mathsf{T}} \theta - y_s)^2$$

<u>Step 1</u>: "Regret equality" from FTRL (Follow The Regularized Leader)

 $\sum_{s=1}^{t} f_{s}(\hat{\theta}_{s-1}) - f_{s}(\theta^{*}) = \frac{\lambda}{2} \|\theta^{*}\|^{2} + \sum_{s=1}^{t} f_{s}(\hat{\theta}_{s-1}) \|w_{s}x_{s}\|_{\Sigma_{s}^{-1}}^{2} - \frac{1}{2} \|\hat{\theta}_{t} - \theta^{*}\|_{\Sigma_{t}}^{2}$ usually, throw it away except for $\iff \frac{1}{2} \|\hat{\theta}_{t} - \theta^{*}\|_{\Sigma_{t}}^{2} = \frac{\lambda}{2} \|\theta^{*}\|^{2} + \sum_{s=1}^{t} f_{s}(\hat{\theta}_{s-1}) \|w_{s}x_{s}\|_{\Sigma_{s}^{-1}}^{2} + \sum_{s=1}^{t} f_{s}(\theta^{*}) - f_{s}(\hat{\theta}_{s-1})$ negative (online learning) regret $\leq \sigma_*^2 \ln(1/\delta)$ // with high probability $\leq \sigma_0^2 \ln(1/\delta)$ $< S^{2}$ **Step 2**: Bound with known quantities

Algorithm: LOFAV (Linear Optimism with Full Adaptivity to Variance)³

• Still optimism, but $L = \log_2(T)$ different UCBs

$$UCB_t(a) = \min_{\ell=1}^{L} UCB_{t,\ell}(a)$$

• UCB_{*t*, \mathcal{E} (*a*): based on weighted ridge regression}

$$\hat{\theta}_{t,\ell} = \min_{\theta} \sum_{s=1}^{t} w_{s,\ell}^2 (x_s^{\mathsf{T}}\theta - y_s)^2 + \lambda_{\ell} ||\theta||_2^2 \quad \text{where} \quad w_{s,\ell}^2 = \min\left\{1, \frac{2^{-2\ell}}{||x_s||_{V_{s-1}}^2}\right\}$$

$$\stackrel{\text{confidence width}}{\underset{\ell}{\text{width}}} \quad \stackrel{\text{ideal width: complex & data-dependent}}{\underset{\ell}{\min \text{UCB}_{\ell}(x): \text{ close approximation}}} \quad \ell = 1$$

$$\ell = 2$$

$$\ell = 3$$

$$\ell = 4$$

