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Motivating applications 2

present an item

click or

Product recommendation Materials discovery with 
Bayesian optimization

Common challenge: Efficient exploration!



The contextual bandit problem
For 


• (Optional) Observe a context  


• Take an action 


• Observe feedback (reward) 

t = 1,…, T
ct ∈ 𝒞

at ∈ 𝒜
yt
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user information

item

click ∈ {0,1}

Product recommendation Bayesian optimization

N/A

point/experiment

evaluation/measurement

-sub-Gaussian noise (zero-mean)σ2
*

unknown parameter 
( -dimensional)d

known feature map

(can be extended to kernels)

Assumption:

maximize  ∑T
t=1 ytGoal:

yt = f*t (at) + ηt

find  with largest a ∈ 𝒜 𝔼yt

f*t (at) = ⟨θ*, ϕ(at, ct)⟩



Theoretical performance measure: Regret 4

RegretT =
T

∑
t=1

max
a

f*t (a) − f*t (at)

oracle’s mean reward algorithm’s mean reward

Average regret = 
RegretT

T
≤

σd

T
For Bayesian optimization,

Optimal worst-case regret:            (Dani et al., 2008)σ*d T

convergence rate  
to the oracle’s performance!

convergence rate  
to the maximum!

exists  s.t.   t ∈ {1,…, T} max
a

f*(a) − f*(at) ≤
σd

T



Key weakness of prior work 5

Weakness 2: Assumes the noise level is the same throughout.

⇒ can we attain  ?d ∑T
t=1 σ2

t

We made significant progress!

Weakness 1: Requires knowledge of  (or its upper bound)σ*

In practice, usually not true; i.e., .σ1 ≠ σ2 ≠ ⋯ ≠ σT

In practice,  is not known ⇒ We need to guess it by .σ2
* σ2

0

Over-specification:    ⇒   regretσ2
0 ≥ σ2

* ≤ σ0d T
Under-specification:    ⇒   regretσ2

0 ≤ σ2
* = Θ(T)

If    , then far from  !σ* ≪ σ0 σ*d T

Jun and Kim, “Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization,” ICML’24

If , then  
Tmax

t=1
σ2

t ≤ σ2
0 σ0d T = d ∑T

t=1 σ2
0



Contribution 1: Sub-Gaussian noise
• Novel algorithm LOSAN (Linear Optimism with Semi-Adaptivity to Noise)


• : actual noise level.


• : specified noise level ( ).

σ*

σ0 σ0 ≥ σ*
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OFUL

[Abbasi-Yadkori+11]

LOSAN

(Ours) (σ* d+σ0) ⋅ dT

σ0 d ⋅ dT

when σ* = 0

σ0 d ⋅ dT

σ0 ⋅ dT

dK + d2

LOSAN is the first noise-adaptive algorithm for sub-Gaussian noise!

regret bound

if , then 4.5x faster convergence!d = 20



Contribution 2: Bounded noise
• Novel algorithm LOFAV (Linear Optimism with Full Adaptivity to Variance)


•  for some known R; noise variance at time t is  (unknown)|ηt | ≤ R σ2
t
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*i.e., assume that the noise cannot be a function of the chosen action

LOFAV is the first practical variance-adaptive algorithm!

VOFUL

[Zhang+21]

LOFAV

(Ours)

d4.5 R2+ ∑T
t=1 σ2

t

no additional  
technical 

assumption*
time complexity  

per round

d2K log(T )

SAVE

[Zhao+23]

VOFUL2

[KimJ+22]

OFUL

[Abbasi-Yadkori+11] Rd T d2K

d1.5 R2+ ∑T
t=1 σ2

t

  (optimal)d R2+ ∑T
t=1 σ2

t

  (optimal)d R2+ ∑T
t=1 σ2

t

✔

✗

✔

✔

✔

uses  
all samples 
for learning

d2K log(T )

ed

ed

✔

✗

✔

✔

✔

(K: number of actions)



Numerical results: Sub-Gaussian noise
• Optimizing benchmark functions


• Over-specified setting: 

• Linear model with random Fourier features (d=128) to mock Gaussian kernel.

• BayesOpt (EI/UCB): Bayesian optimization package BayesO

σ* = 0.01, σ0 = 1
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Numerical results: Bounded noise
• Optimizing benchmark functions


• Noise bound: ,  Noise variance: 

• Linear model with random Fourier features (d=128) to mock Gaussian kernel.

• BayesOpt (EI/UCB): Bayesian optimization package BayesO

R = 1 σ2
t = (0.01)2
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Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise)
• Optimistic strategy = use upper confidence bound (UCB) [Agrawal’95]

• At time t=1,…,T,


• Choose action at = arg max
a∈𝒜

UCBt(a)
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∥x∥A−1 = x⊤A−1x

Must be correct with high probability

Ridge regression

Vt−1 = λI +
t−1

∑
s=1

ϕ(as, cs)ϕ(as, cs)⊤

uncertainty of aNoise factor

We improved this!

where UCBt(a) = ⟨ϕ(a, ct), ̂θt−1⟩ + βt−1∥ϕ(a, ct)∥V−1
t−1



Algorithm: LOSAN (Linear Optimism with Semi-Adaptivity to Noise)

• Define 


• OFUL:       


• LOSAN:    


• For technical reasons, we turn to weighted ridge regression

xt := ϕ(at, ct)
βt ≈ dσ2

0

βt ≈ σ2
0+ ∑t−1

s=1 (x⊤
s

̂θs−1 − ys)2∥xs∥2
V−1

s
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If , then ̂θs−1 ≈ θ* 𝔼[(x⊤
s θ* − ys)2] ≤ σ2

*

∑t−1
s=1 (x⊤

s
̂θs−1 − ys)2∥xs∥2

V−1
s

⪅ σ2
* ∑t−1

s=1 ∥xs∥2
V−1

s

       by elliptical potential lemma⪅ σ2
*d

⪅ σ2
0 + dσ2

*

(by advanced analysis in online learning theory)

̂θt = min
θ

t

∑
s=1

w2
s (x⊤

s θ − ys)2 + λ∥θ∥2
2      where      w2

s = min 1,
1

∥xs∥2
V−1

s−1

Key technical ingredient for : 
“Regret equality” from online learning + martingale concentration

βt



Proof of confidence set 12

Step 1: “Regret equality” from FTRL (Follow The Regularized Leader)

        // with high probability≤ σ2
* ln(1/δ)

negative (online learning) regret

 ̂θt : weighted estimator, Σt := λI +
t

∑
s=1

w2
s xsx⊤

s , f(θ) :=
1
2

w2
s (x⊤

s θ − ys)2

⟺
1
2

∥ ̂θt − θ*∥2
Σt

=
λ
2

∥θ*∥2 +
t

∑
s=1

fs( ̂θs−1)∥wsxs∥2
Σ−1

s
+

t

∑
s=1

fs(θ*) − fs( ̂θs−1)

t

∑
s=1

fs( ̂θs−1) − fs(θ*) =
λ
2

∥θ*∥2 +
t

∑
s=1

fs( ̂θs−1)∥wsxs∥2
Σ−1

s
−

1
2

∥ ̂θt − θ*∥2
Σt

≤ S2 ≤ σ2
0 ln(1/δ)Step 2: Bound with known quantities

usually, throw it away except for 
                         [Dekel+10]



Algorithm: LOFAV (Linear Optimism with Full Adaptivity to Variance)

• Still optimism, but  different UCBs





• : based on weighted ridge regression 

         

L = log2(T)

UCBt(a) =
L

min
ℓ=1

UCBt,ℓ(a)

UCBt,ℓ(a)

̂θt,ℓ = min
θ

t

∑
s=1

w2
s,ℓ(x⊤

s θ − ys)2 + λℓ∥θ∥2
2      where      w2

s,ℓ = min 1,
2−2ℓ

∥xs∥2
V−1

s−1
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t

confidence 
width

ℓ = 1

ℓ = 2
ℓ = 3
ℓ = 4

     ideal width: complex & data-dependent 

: close approximationmin

ℓ
UCBℓ(x)



Q&A
Thank you!
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