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Contextual Bandits Problem

For each round:

• Agent (decision maker) is presented
with a context

• Agent chooses an action

• Agent observes reward
(but only for chosen action)

Goal: Learn actions that maximize rewards

• Fundamental problem: How to efficiently use the experience?
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Key Challenges of Contextual Bandits

Balancing exploration & exploitation

• Exploit: maximize reward given what is known

• Explore: collect more information for (potentially) higher reward

Generalization

• May never see same context twice: use effectively

• Need to generalize across contexts

Statistical efficiency & computational efficiency
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Key Challenges of High-Dimensional Contextual Bandits

Need to deal with high-dimensional context

• Context dimension is potentially larger than the time horizon

• Exploration duration cannot scale with ambient context dimension

However, the reward model is typically sparse

• Only small number of features are relevant w.r.t reward model.

But, this sparse structure is unknown!

Key challenge: How can we ensure statistical efficiency?



Sparse Linear Contextual Bandit

Stochastic linear contextual bandits

For each round t = 1, ..., T

1. Contexts {xt,k ∈ Rd | k ∈ [K]} drawn from (unknown) PX

2. Agent selects an arm at ∈ [K]

3. Agent observes reward:

rt,at = x⊤
t,at

β∗︸ ︷︷ ︸
expected reward

+ ηt

ηt sub-Gaussian noise with parameter σ

β∗ ∈ Rd unknown to agent

Sprase linear contextual bandits

• Context dimension is large (d ≫ 1), even potentially d > T

• β∗ is sparse, i.e., ∥β∗∥0 = s0 with s0 ≪ d
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Sparse Linear Contextual Bandit (cont’d)

Optimal action at period t: a∗
t = argmaxk∈[K] x

⊤
t,kβ

∗

Goal: Choose a policy π = {at : t = 1, 2, ...} that minimizes the following
cumulative regret

RegretT (π) :=
T∑

t=1

x⊤
t,a∗

t
β∗︸ ︷︷ ︸

optimal reward

− x⊤
t,at

β∗︸ ︷︷ ︸
agent’s reward

Maximizing cumulative reward ≡ minimizing cumulative regret



Related Literature

Emerging body of work on sparse linear contextual bandit

• Multiple-parameter setting: each arm has its own underlying
parameter (K parameters), and only one context vector is given.

(Bastani and Bayati, 2020; Wang et al., 2018)

• Single-parameter setting: arms have one shared parameter, and
K different contexts vectors are given.

(Kim and Paik, 2019; Hao et al., 2020b; Oh et al., 2021; Li et al., 2021;
Ariu et al., 2022; Chakraborty et al., 2023)

To achieve regret bound that only depends logarithmically on d,

• Compatibility condition1 on Σ := 1
K
E[
∑

k∈[K] xkx
⊤
k ]

(Kim and Paik, 2019; Oh et al., 2021; Ariu et al., 2022)

• Margin condition (Bastani and Bayati, 2020; Wang et al., 2018; Li
et al., 2021; Ariu et al., 2022; Chakraborty et al., 2023)

• Relaxed symmetry & balanced covariance (Oh et al., 2021; Ariu et al.,
2022)

• Anti-concentration (Li et al., 2021; Chakraborty et al., 2023)

1Alternative form of regularity is required, e.g., minimum eigenvalue of Σ (Hao et al.,
2020b), bounded sparse eigenvalue of Σ (Li et al., 2021; Chakraborty et al., 2023)
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Existing Assumptions in Related Literature
Compatibility condition on averaged arm

[Compatibility condition on Σ]
Let Σ := 1

K
E[
∑

k∈[K] xt,kx
⊤
t,k]. For support set S0 := {j ∈ [d] : β∗

j ̸= 0},

∃ϕ2
0 > 0 such that

ϕ2
0 ≤ s0β

⊤Σβ

∥βS0∥21
for all β with ∥βSc

0
∥1 ≤ 3∥βS0∥1

• Introduced to ensure ℓ1-error bound of Lasso estimate with i.i.d.
data (Bühlmann and Van De Geer, 2011)

• Extended to Lasso estimate with non-i.i.d. data (Kim and Paik, 2019;
Oh et al., 2021; Li et al., 2021; Ariu et al., 2022)



Existing Assumptions in Related Literature
Margin condition

[α-margin condition]
For α > 0, ∃∆∗ > 0 such that for any h > 0 and t ∈ [T ],

P
(
x⊤
t,a∗

t
β∗ − max

k ̸=a∗
t

x⊤
t,kβ

∗ ≤ h

)
≤

(
h

∆∗

)α

• Probabilistic relaxation of usual “gap” assumption in multi-armed
bandit literature (Goldenshluger and Zeevi, 2013)

• α = 0 represents no additional condition imposed.

• α = ∞ is equivalent to minimum gap condition.

• Utilized to achieve logarithmic depedence on both d and T

(Bastani and Bayati, 2020; Wang et al., 2018; Li et al., 2021; Ariu
et al., 2022; Chakraborty et al., 2023)



Existing Assumptions in Related Literature
Stochastic assumptions on context vector distribution

[Relaxed symmetry]
For PX , ∃1 ≤ ν < ∞ such that PX (−x)

PX (x)
≤ ν ∀x with PX (x) ̸= 0

• Skewness of context distribution is bounded

[Balanced covariance]
Consider a permutation (i1, ..., iK) of (1, ...,K). For any k ∈ {2, ...,K − 1}
and fixed β, there exists CX < ∞ such that

E
[
xikx

⊤
ik
1{x⊤

i1
β < ... < x⊤

iK
β}
]
≼ CXE

[
(xi1x

⊤
i1

+ xiKx⊤
iK

)1{x⊤
i1
β < ... < x⊤

iK
β}
]

• Sufficient randomness in observed features compared to
non-observed features

[Anti-concentration]
∃ξ > 0 such that for each k ∈ [K], t ∈ [T ],v ∈ Rd, and h > 0,

P(|x⊤
t,kv|2 ≤ h∥v∥22) ≤ ξh

• Prohibits context features to fall along a sigular direction



Research Motivation

• Some combination of the aformentioned assumptions are needed to
achieve O(poly log dT ) regret.
▶ Margin condition is commonly assumed.

• However, their complexity often obscures relative strength of one
assumption over another.

Question: Can construct a weaker condition than existing assumptions to
derive O(poly log dT ) regret?
Question: Can design a statistical efficient algorithm under such a new
condition?
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Compatibility Condition on Optimal Arm

HLS condition in stochastic linear bandits
Let Σ∗ := E[xt,a∗

t
x⊤
t,a∗

t
] where xt,a∗

t
is context feature for optimal arm.

Context feature PX is said to be HLS2 if

λmin(Σ
∗) > 0

• Sufficient & necessary condition for achieving constant regret in
stochastic linear bandit setting (Hao et al., 2020a; Papini et al., 2021)

[Compatibility condition on optimal arm]
There exists ϕ2

∗ > 0 such that

ϕ2
∗ ≤ s0β

⊤Σ∗β

∥βS0∥21
for all β with ∥βSc

0
∥1 ≤ 3∥βS0∥1

• Generalization of HLS condition

• WANT: Strictly weaker than existing stochastic assumptions on
context distributions

2The acronym refers to the last names of the authors of Hao et al. (2020a)



Towards the Weakest Conditions in Lasso Bandits

Usual pipeline of theoretical research is...

Assumptions

w� derive

Theorem (Regret Bound)



Towards the Weakest Conditions in Lasso Bandits

Usual pipeline of theoretical research is...

Assumptionsw� derive

Theorem (Regret Bound)



Towards the Weakest Conditions in Lasso Bandits

How can we show that our assumptions are strictly weaker than the
existing assumptions?

Existing Assumptions

w� implies

Our Assumptionsw� derive



Towards the Weakest Conditions in Lasso Bandits

How can we show that our assumptions are strictly weaker than the
existing assumptions?

Existing Assumptionsw� implies

Our Assumptions

w� derive



Towards the Weakest Conditions in Lasso Bandits

How can we show that our assumptions are strictly weaker than the
existing assumptions?

Existing Assumptionsw� implies

Our Assumptionsw� derive

Theorem (Regret bound)



Towards the Weakest Conditions in Lasso Bandits

How can we show that our assumptions are strictly weaker than the
existing assumptions?

Existing Assumptionsw� implies

Our Assumptionsw� derive

Theorem (Sharpest Regret Bound)



Relationships among Distributional Assumptions

• Blue arrows: implication relationships

• Red arrows: infeasible implication relationships

• Orange bullets: additional assumptions not needed by our analysis

• Our new assumption is the mildest condition that allows
O(poly log dT ) regret (in single-parameter Lasso bandit problem)



Relationships among Distributional Assumptions (Cont’d)

Definition (Greedy diversity)
For β ∈ Rd, let πβ({xk}Kk=1) = argmaxk x

⊤
k β and the chosen feature with

respect to πβ be xβ. Context distribution PX satisfies the greedy diversity
if ∃ϕ2

G > 0 such that

ϕ2
G ≤

s0β
⊤E{xk}Kk=1

∼PX
[xβx

⊤
β ]β

∥βS0∥21
for any β ∈ Rd

• Greedy diversity implies compatibility condition on optimal arm

∵ optimal arm is a greedy policy with respect to β∗

Lemma (Anti-concentration ⇒ ours)

Anti-concentration condition implies the greedy diversity with ϕ2
G = 1

4ξK
.

Lemma (Relaxed symmetry & Balanced covariance ⇒ ours)

Relaxed symmetry & Balanced covariance conditions imply the greedy

diversity with ϕ2
G =

ϕ2
0

2νCX
.



Challenges

Under compatibility condition on optimal arm,

• theoretical guarantee of Lasso estimator can be derived only if
sufficient selections of optimal arms is guaranteed

To ensure sufficient selections of optimal arms,

• Choose an arm randomly while expecting optimal arm to be chosen

How many times? Is it enough?



Forced Sampling then Weighted Loss Lasso (FS-WLasso)

Input parameter: Number of exploration M0, Weight w, Regularization
param {λt}t≥0

For each round t = 1, ..., T do:

1. Observe xt,k for all k ∈ [K]

2. If t ≤ M0 then ▷ Forced sampling stage

Choose at ∼ Unif(A) and observe rt,at

3. Else ▷ Greedy selection stage

Compute β̂t−1 = argminβ wL0(β) + Lt−1(β) + λt−1∥β∥1
Select at = argmaxk∈[K] x

⊤
t,kβ̂t−1 and observe rt,at

L0(β):=
∑M0

i=1(x
⊤
i,ai

β − ri,ai )
2: samples from forced sampling stage

Lt−1(β):=
∑t−1

i=M0+1(x
⊤
i,ai

β − ri,ai )
2: samples from greedy selection stage



Regret Bound of FS-WLasso

Assumptions

• [Boundedness] x ∈ X , ∥x∥∞ ≤ xmax, and |β∗∥1 ≤ b

• [α-margin condition] P(x⊤
t,a∗

t
β∗ −maxk ̸=a∗

t
x⊤
t,kβ

∗ ≤ h) ≤ (h/∆∗)
α

• [Compatibility condition on Σ∗] ∃ϕ2
∗ > 0 such that

ϕ2
∗ ≤ s0β

⊤Σ∗β

∥βS0∥21
for all β with ∥βSc

0
∥1 ≤ 3∥βS0∥1

Definition
• [Compatibility constant ratio] ρ := ϕ2

∗/ϕ
2
0

▶ Ratio of compatibility constant for Σ∗ to compatibility constant for Σ

▶ 0 < ρ ≤ K: compatibility condition on Σ∗ ⇒ compatibility condition on Σ



Regret Bound of FS-WLasso (Cont’d)

Theorem (Regret bound of FS-WLasso)

For δ ∈ (0, 1], set input parameters of FS-WLasso by

τ ≥ poly (xmax, s0, ϕ∗, σ, α,∆∗, log d, log δ) ,M0 = Õ(ρ2σ2x
4+ 4

α
max s

2+ 2
α

0 ϕ
−4− 4

α
∗ ) ,

λt = Õ(σxmax(
√
t−M0 + w

√
M0)) , w =

√
τ/M0 ,

then with high probability, regret of FS-WLasso policy π over round T is
upper-bounded by

RegretT (π) =


O(sα+1

0 T
1−α
2 (log d+ log log T )

α+1
2 ) for α ∈ (0, 1) ,

O(s20 log T (log d+ log log T )) for α = 1 ,

O(s
2+ 2

α
0 log d) for 1 < α ≤ ∞ .

• Matches lower bound of O(T
1−α
2 (log d)

α+1
2 + log T ) for α ∈ (0, 1] in

Li et al. (2021) up to log T factor

• Mildest condition that allows O(poly log dT ) regret

• Expand range of α that logarithmic regret is attainable even for
(s0 = d) low-dimensional setting (previously only known for α > 2)



Regret Analysis of FS-WLasso

Cyclic structure induced by our assumptions

• optimal arms were chosen sufficiently until t− 1

⇒ small estimation error of β̂t

⇒ high probability of choosing optimal arm at t+ 1

Domino-like phenomenon that propagates forward in time

• Mathematical induction argument: P (n) holds ⇒ P (n+ 1) holds

• Controlling probability of failing to propagate good event



Regret Analysis of FS-WLasso (Cont’d)
(1) Initial condition of induction must be satisfied (base case)

Lemma
Let V̂M0 := w

∑M0
i=1 xi,aix

⊤
i,ai

. Suppose number of exploration M0 is set to

M0 ≳ max

{
ρ2

(
σx2

maxs0
∆∗ϕ2

∗

)2 (
x2
maxs0
ϕ2
∗

) 2
α(
log log τ + log d

δ

)
,
ρ2x4

maxs
2
0

ϕ4
∗

log d2

δ

}
.

Then with probability at least 1− δ,

ϕ2
(
V̂M0

)
≥ max

4xmaxs0

∆∗

(
80x2

maxs0

ϕ2
∗

) 1
α

λM0+τ , 64x
2
maxs0 log

1

δ

 .

• optimal arms were chosen sufficiently

⇔ empirical Gram matrix V̂M0 concentrates around Σ∗



Regret Analysis of FS-WLasso (Cont’d)
(1) Initial condition of induction must be satisfied (base case)

Lemma
Let τ ≥ poly (xmax, s0, ϕ∗, σ, α,∆∗, log d, log δ). For M0 ≤ t ≤ τ , let

λt ≳ σxmax

√w2M0 log
2d

δ
+

√
(t−M0) log

d(log 2(t−M0))2

δ

 .

Then, with probability at least 1− δ, β̂t satisfies

∥β∗ − β̂t∥1 ≤
∆∗

2xmax

(
ϕ2
∗

80x2
maxs0

) 1
α

.

• β̂t becomes sufficiently accurate rather than tighter with respect to t



Regret Analysis of FS-WLasso (Cont’d)
(2) Propagate good event to next round (induction step)

Lemma

For any t′ ≥ 0, with high probability,

N(t′) :=

M0+t′∑
t=M0+1

(
2xmax

∆∗
∥β∗ − β̂t−1∥1

)α

≤ ϕ2
∗

80x2
maxs0

t′

• N(t′) is determined by errors of β̂t′−1 up to t = M0 + t′



Regret Analysis of FS-WLasso (Cont’d)
(2) Propagate good event to next round (induction step)

Lemma (Oracle Inequality for Weighted Loss Lasso Estimate)

For t′ ≥ poly (xmax, s0, ϕ∗, σ, α,∆∗, log d, log δ), suppose N(t′) ≤ ϕ2
∗

80x2
maxs0

t′.

Then with probability at least 1− δ,

∥β∗ − β̂M0+t′∥1 ≤ C0σxmaxs0
ϕ2
∗

√
2 log log 2t′ + log 7d

δ

t′
.

• Confidence bound becomes tighter, as t′ (number of samples obtained
by greedy policy) increases

ë Results in higher probability of choosing optimal arm at next round



Regret Analysis of FS-WLasso (Cont’d)
(3) Control probability of failing to propagate good event at every round

Stochasticity of problem induces small probability of failing to propagate
good event

• Ee: sub-Gaussian noise concentration for forced sampling stage

• Eg: sub-Gaussian noise concentration for greedy selection stage

• EN : bounded number of sub-optimal arm selection for greedy
selection stage

• E∗
τ : bounded compatibility constant of empirical Gram matrix of

optimal arm for greedy selection stage

Lemma (High probability of jointly good events)

P(Ee ∩ Eg ∩ EN ∩ E∗
τ ) ≥ 1− δ .

• With high probability, good events occur independently of induction
argument

• Under these good events, induction argument always holds!



Regret Analysis of FS-WLasso (Cont’d)

Divide the time horizon [T ] into three groups:

(1) (t ≤ M0): Forced sampling stage

▶ incur max regret each round: 2xmaxbM0 = O(s
2+ 2

α
0 log d)

(2) (M0 < t ≤ τ): before cycle (base case) begins
▶ obtain samples with sufficiently accurate estimate

▶ incur O
(

σ2

∆∗

(
x2
maxs0
ϕ2
∗

)1+ 1
α (

log d+ log 1
δ

))
regret

(3) (t > τ): induction argument holds
▶ Lasso estimates with tight confidence bound results in high probability of

choosing optimal arm



O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2

(
log d+ log log T

δ

) 1+α
2

)
α ∈ (0, 1) ,

O
(

1
∆∗

(
σx2

maxs0
ϕ2
∗

)2

(log T )
(
log d+ log log T

δ

))
α = 1 ,

O
(

α
(α−1)2

· σ2

∆∗

(
x2
maxs0
ϕ2
∗

)1+ 1
α (

log d+ log 1
δ

))
α > 1 .



Efficiency of Forced Sampling

• What’s happening during forced sampling stage
▶ Compatibility condition of empirical Gram matrix is not guaranteed

ë this period is also called “burn-in” phase

▶ In previous Lasso bandits, compatibility condition after burn-in phase is
ensured by diversity assumptions on context vectors, rather than
exploration of algorithm
ë Lasso estimator calculation (Oh et al., 2021; Ariu et al., 2022), UCB (Li
et al., 2021), TS (Chakraborty et al., 2023)

▶ FS-WLasso does not compute parameters but just samples arm
ë Do not require additional diversity assumptions on context distribution

Theorem (Regret under Diversity Assumptions)

Suppose either anti-concentration or relaxed symmetry + balanced
covariance assumptions hold. Then, FS-WLasso still achieves
O(poly log dT ) regret even if we set M0 = 0.

• Forced sampling may not be required if diversity assumptions on
context distribution are given



Details of Numerical Experiments

Benchmark algorithms

• DR-Lasso (Kim and Paik, 2019), SA-Lasso (Oh et al., 2021),
TH-Lasso (Ariu et al., 2022), L1-CB-Lasso (Li et al., 2021), ESTC (Hao
et al., 2020b)

Simulation set up

• Generate β∗ with sparsity s0 = ∥β∗∥0 and βS0 ∼ Unif(Sd−1)

• Multivariate correlated Gaussian context distribution (Experiment 1)

• Context feature vectors of sub-optimal arms are fixed, and only
optimal arm has randomness (Experiment 2)

ë Diversity assumptions on context distributions are not valid



Results of Numerical Experiments
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• Report the average cumulative regret over 100 independent runs.

• The error bars represent the standard deviations.



Summary

• Suggest novel sufficient condition for deriving O(poly log dT ) regret
for Lasso bandit algorithm
▶ Compatibility on optimal arm is the weakest assumption on context

distributions known in the (single-parameter) lasso bandit problem.

• Propose forced-sampling-based algorithm (FS-WLasso) for sparse
linear bandit problem
▶ Achieves O(poly log dT ) regret
▶ Do not require additional diversity assumptions on context distribution

• Novel analysis technique based on high-probability analysis &
mathematical induction

• FS-WLasso significantly outperforms benchmarks
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