Confidence Set Analysis in Preference Feedbacks

Se-Young Yun (KAIST AI)

ChatGPT Al virtual assistant

ChatGPT

- The most successful AI service
- Strives to generate answers that align with users' intentions
- Preference Alignment from Human Feedback!!!

ChatGPT 40 \sim

=0

Email for plumber quote

Ð

Pick outfit to look good on camera ♀ What to do with kids' art

۶-

Python script for daily email reports

RLHF **Reinforcement Learning from Human Feedback**

RLHF: a key ingredient of recent success of LLMs

Conversation Examples for Evaluation

3

Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback

RLHF's Efficiency RLHF significantly outperforms baselines

Ex> English Summarization Task

4

Stiennon et al "Learning to summarize from human feedback"

Bradley-Terry Model Probability model for pairwise comparisons

Bradley-Terry Model: a probability model for the outcome of pairwise comparisons

$$\mathbb{P}(i > j) = \frac{1}{e^{r_i}}$$

- The probability that item i wins against item j is represented using reward scores r_i and r_j • RLHF learns reward scores using the Bradley-Terry model

 $\underset{r \in \mathcal{R}}{\operatorname{arg\,min}} -$

- w_t , l_t are the winner index and the loser index at the t-th comparison
- **Questions: Uncertainty? Confidence? Reward Modes? Other Probability Models?**

 $\frac{e^{r_i}}{i + e^{r_j}} = \frac{1}{1 + e^{-(r_i - r_j)}}$

$$\sum_{t=1}^{T} \log \frac{e^{r_{w_t}}}{e^{r_{w_t}} + e^{r_{l_t}}}$$

Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion

with Junghyun Lee (KAIST AI), Kwang-Sung Jun (Dept. of CS, Univ. of Arizona)

Optimization and Statistical Inference

Logistic Bandits 101 Motivation

- Useful in modeling exploration-exploitation dilemma with *binary/discrete-valued* rewards and items' feature vectors
 - e.g., news recommendation ('click', 'no click'), online ad placement ('click', 'show me later', 'never show again', 'no click')
- Naive reduction to linear bandits is quite suboptimal[Li et al., WWW'10; ICMLW'11]!

The Web Conference 2023 - Seoul Test of Time Award (presented at The Web Conference 2023 in Austin)

Winners: Wei Chu, Lihong Li, John Langford and Robert Schapire for their paper "A Contextual-Bandit Approach to Personalized News Article Recommendation".

Logistic Bandits 101 **Linear Contextual Bandit**

For $t \in [T]$:

- The learner observes a potentially infinite (contextual) arm-set $\mathcal{X}_t \subset \mathbb{R}^d$ 1.
- The learner chooses $x_t \in \mathcal{X}_t$ according to some policy 2.
- Receive a *binary* reward $r_t \sim \text{Ber}(\langle x_t, \theta_{\star} \rangle)$ 3.
 - θ_{\star} is unknown to the learner

Minimize
$$\operatorname{Reg}^{B}(T) := \sum_{t=1}^{T} \left(\langle x_{t,\star}, \theta_{\star} \rangle - \right)$$

(inal·

 $-\langle x_t, \theta_{\star} \rangle), \text{ where } x_{t,\star} := \operatorname{argmax}_{x \in \mathcal{X}_t} \langle x, \theta_{\star} \rangle.$

Logistic Bandits 101 Problem Setting

For $t \in [T]$:

- The learner observes a potentially infinite (contextual) arm-set $\mathcal{X}_t \subset \mathbb{R}^d$ 1.
- The learner chooses $x_t \in \mathcal{X}_t$ according to some policy 2.
- Receive a *binary* reward $r_t \sim \text{Ber}(\mu(\langle x_t, \theta_{\star} \rangle))$ 3.
 - θ_{\star} is unknown to the learner
 - $\mu(z) := (1 + e^{-z})^{-1}$ is the logistic function, $\dot{\mu}(z) = \mu(z)(1 \mu(z))$ is its first derivative

Minimize
$$\operatorname{Reg}^{B}(T) := \sum_{t=1}^{T} \left\{ \mu(\langle x_{t,\star}, \theta_{\star} \rangle) - \right\}$$

Goale

 $-\mu(\langle x_t, \theta_{\star} \rangle)\}, \text{ where } x_{t,\star} := \operatorname{argmax}_{x \in \mathcal{X}_t} \langle x, \theta_{\star} \rangle.$

Logistic Bandits 101 **Preference Feedback**

Preference Feedback:

- The agent selects a tuple (x, a, a') to present to a human labeller
- feature map
- probability $\mu(\langle \phi(x, a) \phi(x, a'), \theta_{\star} \rangle)$

Goal:

- How to find θ_{\star} accurately within a given labeling budget?
- How to define a good confidence range of θ_{\star} ?

• Some papers consider a linear reward model $r_{\theta_{\star}}(x, a) = \langle \phi(x, a), \theta_{\star} \rangle$ where ϕ is a known

• The preference feedback follows the Bernoulli response such that a is preferred over a' with

Logistic Bandits 101 Assumptions

Assumption 1.
$$\bigcup_{t=1}^{\infty} \mathscr{X}_t \subseteq \mathbf{B}^d(1)$$

Assumption 2. $\theta_{\star} \in \mathbf{B}^d(\mathbf{S}) => \text{today's n}$

We consider the following quantities describing the difficulty of the problem:

$$\kappa_{\star}(T) := \left(\frac{1}{T} \sum_{t=1}^{T} \dot{\mu}(\langle x_{t,\star}, \theta_{\star} \rangle)\right)$$

They can scale *exponentially in S* [Faury et al., ICML'20]

nain quantity of interest!

escribing the difficulty of the problem: $\int_{t\in[T]}^{-1} \kappa_{\mathcal{X}}(T) := \max_{t\in[T]} \max_{x\in\mathcal{X}_{t}} \frac{1}{\dot{\mu}(\langle x, \theta_{\star} \rangle)}.$

Logistic Bandits 101 $d\sqrt{T/\kappa_{\star}(T)}$ is minimax optimal (taken from slides of L. Faury on his website)

Theorem 2. [Local Lower-Bound; Abeille et al., AISTATS'21] Let $\mathscr{X}_t = \mathbf{S}^d(1)$ and . Then, for any problem instance θ_{\star} and for $T \ge d^2 \kappa_{\star}(\theta_{\star})$, there exists $\epsilon_T > 0$ such that:

- More nonlinear (flatter tail), the easier!
- Transient regret (small *t*):
 - Exploration of "detrimental" arms
- Permanent regret (large *t*):
 - Sub-linear regret, as the estimate is sufficiently close to θ_{\star}
 - Linear bandit with local slope around θ_{\star} , $\dot{\mu}(\langle x_{\star}, \theta_{\star} \rangle) \sim \frac{1}{\kappa_{\star}(T)}$

$$[\operatorname{Reg}_{\theta,\pi}^{B}] \geq \Omega\left(d\sqrt{\frac{T}{\kappa_{\star}(\theta_{\star})}}\right)$$

(a) Assymetric arm-set.

Logistic Bandits 101 State-of-the-Arts, so-far

• **OFULOg** [Abeille et al., AISTATS'21]. *Non-convex* confidence-set-based UCB algorithm

OFULog-r [Abeille et al., AISTATS'21]. Convex relaxation of OFULog ~ loss-based confidence set

• ada-OFU-ECOLog [Faury et al., AISTATS'22]. Online Newton step [Hazan et al., 2007]-based algorithm

 $dS_{\sqrt{\frac{T}{\kappa_{\perp}(T)}}} + d^2S^6\kappa(T)$

- $dS^{\frac{3}{2}}\sqrt{\frac{T}{\kappa_{\star}(T)}} + \min\left\{d^2S^3\kappa_{\mathcal{X}}(T), R_{\mathcal{X}}(T)\right\}$
- $dS^{\frac{5}{2}}\sqrt{\frac{T}{\kappa_{\star}(T)}} + \min\left\{d^2S^4\kappa_{\mathcal{X}}(T), R_{\mathcal{X}}(T)\right\}$

Can we construct tighter (improved dependency in S) loss-based confidence set??

Logistic Bandits 101 More details in OFULog(-r)

- OFULog and OFULog-r are of the following form: 1. Solve $\hat{\theta}_t = \operatorname{argmin}_{\theta \in \mathbb{R}^d} \left[\mathscr{L}_t(\theta) \triangleq \sum_{s=1}^{t-1} \mathscr{L}_s(\theta) + \lambda_t ||\theta||_2^2 \right]$, where $\mathscr{L}_s(\theta) := -r_s \log \mu(\langle x_s, \theta \rangle) - (1 - r_s) \log(1 - \mu(\langle x_s, \theta \rangle))$
 - 2. Obtain a confidence-set $C_t(\delta) \subseteq \mathbb{B}^d(S)$ satisfying $\mathbb{P}\left[\forall t \ge 1, \theta_{\star} \in C_t(\delta)\right] \ge 1 \delta$.
 - 3. Solve $(x_t, \theta_t) = \operatorname{argmax}_{x \in \mathcal{X}_t, \theta \in C_t(\delta)} \mu(\langle x, \theta \rangle)$, play x_t and observe a reward r_t

Logistic Bandits 101 More details in OFULog(-r)

- **OFULOg** [Abeille et al., AISTATS'21]: $C_t(\delta) := \begin{cases} \theta \in \mathbb{B}^d(S) : \| \nabla \mathscr{L}_t(\theta) - \nabla d\theta \\ \nabla \mathcal{L}_t(\theta) \end{cases}$
- **OFULog-r** [Abeille et al., AISTATS'21]: $\mathscr{C}_{t}(\delta) := \begin{cases} \theta \in \mathbb{B}^{d}(S) : \mathscr{L}_{t}(\theta) - \mathscr{L}_{t}(\widehat{\theta}_{t}) \end{cases}$

The *multiplicative S*'s comes from rather naive applications of self-concordant $(|\ddot{\mu}| \leq \dot{\mu})$ analyses [Bach, 2010]

$$\mathscr{L}_{t}(\widehat{\theta}_{t}) \|_{\mathbf{H}_{t}^{-1}(\theta)} \leq \mathscr{O}\left(\sqrt{dS\log t}\right)$$

$$) \leq \mathcal{O}\left(\sqrt{dS^3\log t}\right)$$

 $\mathcal{C}_t(\delta)$

 $\hat{\theta}_t \bullet$

Logistic Bandits 101 **Gradient and Confidence set**

Gradient

$$\nabla \mathscr{L}_t(\theta_{\star}) = \sum_{s=1}^{t-1} \left(\mu(\langle x_s, \theta_{\star} \rangle) - r_s \right) x_s + 2\lambda_t \theta$$

Martingale Sum

- The gradient at θ_{\star} should be near zero!
- The confidence check can be done with the inverse of Hessian (covariance) $H(\theta_{\star}) = \sum_{s} \dot{\mu}(\langle x_{s}, \theta_{\star} \rangle) x_{s} x_{s}^{\top} + \lambda I$ s=1
- However, we should compute gradient and Hessian for all θ

• Gradient -> Loss conversion can formulate a convex confidence set, albeit not a tightly bound one 16

Regret-to-Confidence-Set Conversion (R2CS) Main Theorem - Improved Confidence Set for Logistic Loss

• Let us consider norm-constrained, unregularized MLE:

$$\widehat{\theta}_{t} := \operatorname{argmin}_{\theta \in \mathbb{B}^{d}(S)} \left[\mathscr{L}_{t}(\theta) := \sum_{s=1}^{t-1} \mathscr{\ell}_{s}(\theta) \right], \text{ where } \mathscr{\ell}_{s}(\theta) := -r_{s} \log \mu(\langle x_{s}, \theta \rangle) - (1 - r_{s}) \log(1 - \mu(\langle x_{s}, \theta \rangle))$$

Theorem 1. [Lee et al., AISTATS'24] We have \mathbb{P} $\forall t \geq dt = 1$ $C_t(\delta) := \left\{ \theta \in \mathbb{B}^d(S) \right\}$ $\beta_t(\delta) := \sqrt{10d \log\left(\frac{St}{4d} + e\right) + 2}$

Strict improvement over prior confidence-set r

17

$$\geq 1, \ \theta_{\star} \in C_{t}(\delta)] \geq 1 - \delta, \text{ where}$$

$$: \mathscr{L}_{t}(\theta) - \mathscr{L}_{t}(\widehat{\theta}_{t}) \leq \beta_{t}(\delta)^{2} \},$$

$$2((e-2) + S)\log\frac{1}{\delta} = \mathcal{O}(\sqrt{(d+S)\log t})$$

radius of $\mathcal{O}\left(\sqrt{dS^{3}\log t}\right)$

Regret-to-Confidence-Set Conversion (R2CS) **Proof Sketch of Theorem 1**

Decomposing the logistic loss with any online learning algorithm θ_s : $\mathscr{L}_{t}(\theta_{\star}) - \mathscr{L}_{t}(\widehat{\theta}_{t}) = \sum_{s=1}^{t-1} \mathscr{L}_{s}(\theta_{\star}) - \mathscr{L}_{s}(\widehat{\theta}_{t}) =$

where
$$\zeta_1(t) := \sum_{s=1}^{t-1} \xi_s \langle x_s, \tilde{\theta}_s - \theta_\star \rangle, \quad \zeta_2(t) :=$$

- high probability since θ_{\star} is the problem instance parameter
- $\hat{\theta}_t$ is the optimal parameter for the entire batch while $\tilde{\theta}_s$ is online

$$\sum_{s=1}^{t-1} \left(\ell_s(\tilde{\theta}_s) - \ell_s(\hat{\theta}_t) \right) + \sum_{s=1}^{t-1} \left(\ell_s(\theta_\star) - \ell_s(\tilde{\theta}_s) \right)$$

 $= \sum_{s=1}^{t-1} \operatorname{Keg}^{o}(t) \qquad \zeta(t) = \zeta_{1}(t) - \zeta_{2}(t)$ $= \sum_{s=1}^{t-1} \operatorname{KL}(\mu_{s}(\langle x_{s}, \theta_{\star} \rangle), \mu_{s}(\langle x_{s}, \tilde{\theta}_{s} \rangle))$ s=1

• $\operatorname{Reg}^{O}(t)$ is the online regret up to time t, and $\zeta(t)$ is the superiority of the online learning algorithm in terms of loss compared to θ_{\star} which is expected very small (independent to t) with

Regret-to-Confidence-Set Conversion (R2CS) Proof Sketch of Theorem 1

- 1. Decomposing the logistic loss such that the $\beta_t(\delta)^2$ is expressed as a sum of Reg⁰(*t*), regret of *any* online learning algorithm of our choice, $\zeta_1(t)$, a sum of martingales, and $-\zeta_2(t)$, a (negative) sum of KL-divergences.
- 2. For $\text{Reg}^{O}(t)$, we utilize the state-of-the-art online regret of Foster et al., (COLT'18), which reduces the usual dS to $d \log S$, without ever running the algorithm.
- 3. For $\zeta_1(t)$, we utilize a novel anytime variant of the Freedman's concentration inequality [Freedman, 1975] for martingales.
- 4. For $-\zeta_2(t)$, we utilize the Bregman geometrical interpretation of the KLdivergence, along with self-concordant results.

Regret-to-Confidence-Set Conversion (R2CS) Proof of Theorem 1

2. For $\operatorname{Reg}^{O}(t)$, we utilize the state-of-the-art online regret of Foster et al., (COLT'18), which reduces the usual dS to $d \log S$, without ever running the algorithm.

Theorem [Foster et al., COLT'18] There exists an (improper learning) algorithm for online logistic regression with the following regret:

 $\operatorname{Reg}^{O}(t) \leq 10$

Note how we get *d* log *S* instead of *dS*!! Even better, we get this *without ever running the algorithm*, which in this case, is quite expensive!

$$Dd \log\left(\frac{St}{4d} + e\right).$$

20

Related Work: Online-to-Something Conversions Online Learning -> Concentration of Measure

Online-to-confidence-set: Start from some online learning algorithm *A* with regret s=1

directly translates into tighter confidence sets" [Abbasi-Yadkori et al., AISTATS'12]; see Chapter 23.3 of Lattimore and Szepesvári (2020)

regret??

worse regret & good computational complexity [Jézéquel et al., COLT'20]

Our algorithm does not run the online learning part!

- $\sum \ell_s(\theta_s) \ell_s(\theta_\star) \le B(t)$, then bound LHS to obtain a quadratic-type confidence set on θ_\star that
- depends on the outputs of \mathscr{A} whose radius scales with B(t) [Abbasi-Yadkori et al., AISTATS'12; Jun et al., NeurIPS'17]
- Advantages of O2SC: "progress in constructing better algorithms for online prediction problems
- **BUT**, what if the online prediction problem has a trade-off between computational complexity and
- e.g., online logistic regression: good regret & bad computational complexity [Foster et al., COLT'18] or

Improved Regret of Logistic Bandits **OFULog+**

Theorem 2. [Lee et al., AISTATS'24] OFULog+ incurs the following regret bound w.p. at least $1 - \delta$:

permanent term

• Note that our algorithm is of the same form with OFULog-r, except we've only changed the confidence set radius, $\mathcal{O}\left(\sqrt{dS^3 \log t}\right)$ to $\mathcal{O}\left(\sqrt{(d+S)\log t}\right)$, which we call *OFULog*+

$$+\min\left\{d^2S^2\kappa_{\mathcal{X}}(T), R_{\mathcal{X}}(T)\right\}$$

transient term

Improved Regret of Logistic Bandits **OFULog+** is the state-of-the-art, taking S into account

• **OFULOg** [Abeille et al., AISTATS'21]. *Non-convex* confidence-set-based UCB algorithm

• **OFULog-r** [Abeille et al., AISTATS'21]. Convex relaxation of OFULog

 $dS^{\frac{5}{2}}\sqrt{\frac{T}{\kappa_{\star}(T)}} + \min\left\{d^2S^4\kappa_{\mathcal{X}}(T), R_{\mathcal{X}}(T)\right\}$

• ada-OFU-ECOLog [Faury et al., AISTATS'22]. Online Newton step (ONS) [Hazan et al., 2007]-based algorithm

$$dS_{\sqrt{\frac{T}{\kappa_{\star}(T)}}} + d^2 S^6 \kappa(T)$$

• **OFULog**+ [Lee et al., AISTATS'24]. Tight loss-based confidence set

$$dS\sqrt{\frac{T}{\kappa_{\star}(T)}} + n$$

 $dS^{\frac{3}{2}}\sqrt{\frac{T}{\kappa_{\star}(T)}} + \min\left\{d^2S^3\kappa_{\mathcal{X}}(T), R_{\mathcal{X}}(T)\right\}$

 $\min\left\{d^2S^2\kappa_{\mathcal{X}}(T), R_{\mathcal{X}}(T)\right\}$

New Confidence Set! Likelihood Ratio-Based Confidence Set

Theorem 3. [Lee et al., pre-print] We have \mathbb{P} $C_t(\delta) := \left\{ \theta \in \mathbb{B}^d(S) : \right.$ $\beta_t(\delta) := 1 + 1$

Remove *S* dependency!

• Let L_t be the Lipschitz constant of \mathscr{L}_t which is bounded above by $(1 + \frac{3}{2})(t - 1)$

$$\begin{bmatrix} \forall t \ge 1, \ \theta_{\star} \in C_{t}(\delta) \end{bmatrix} \ge 1 - \delta, \text{ where}$$
$$\mathscr{L}_{t}(\theta) - \mathscr{L}_{t}(\widehat{\theta}_{t}) \le \beta_{t}(\delta)^{2} \Big\},$$
$$\log \frac{1}{\delta} + d \log \frac{2SL_{t}}{d}$$

Martingale Log-Likelihood Proof Sketch of Theorem 3

Let $M_t(\theta) = \exp(\mathscr{L}_t(\theta_{\star}) - \mathscr{L}_t(\theta))$. The Martingale.

Lemma. For any data-independent prior Q, the following holds:

$$\mathbb{P}\left(\exists t: \mathbb{E}_{\theta \sim \mathbb{Q}}[I]\right)$$

Let $M_t(\theta) = \exp\left(\mathscr{L}_t(\theta_{\star}) - \mathscr{L}_t(\theta)\right)$. Then, it is easy to check $M_t(\theta)$ is a non-negative

or \mathbb{Q} , the following holds: $[M_t(\theta)] \ge \log \frac{1}{\delta} \le \delta$

Time-Uniform PAC-Bayesian Bound Proof Sketch of Theorem 3

We follow the usual recipes for deriving time-uniform PAC-Bayesian bound (Alquier, 2024; Chugg et al., 2023):

Lemma. For any data-independent prior \mathbb{Q} and any sequence of adapted posterior distributions (possibly learned from the data) $\{\mathbb{P}_t\}$, the following holds: $\mathbb{P}\left(\exists t : \mathscr{L}_t(\theta_{\star}) - \mathbb{E}_{\theta \sim \mathbb{P}_t}[\mathscr{L}_t(\theta)] \ge \log \frac{1}{\delta} + D_{KL}(\mathbb{P}_t || \mathbb{Q})\right) \le \delta$

Our novelty is the choice of \mathbb{Q} and $\{\mathbb{P}_t\}$

$$\mathbb{Q} = Unif(\Theta), \quad \mathbb{P}_t =$$

$$Unif(\widetilde{\Theta}_t \triangleq (1-c)\widehat{\theta}_t + c\Theta)$$

Improved Regret of Logistic Bandits OFULog+ is the state-of-the-art, taking S into account

• **OFULOg** [Abeille et al., AISTATS'21]. *Non-convex* confidence-set-based UCB algorithm

• **OFULog-r** [Abeille et al., AISTATS'21]. Convex relaxation of OFULog

 $dS^{\frac{5}{2}}\sqrt{\frac{T}{\kappa_{\star}(T)}} + \min\left\{d^2S^4\kappa_{\mathcal{X}}(T), R_{\mathcal{X}}(T)\right\}$

• ada-OFU-ECOLog [Faury et al., AISTATS'22]. Online Newton step (ONS) [Hazan et al., 2007]-based algorithm

• **OFULog**++ [Lee et al., pre-print 24]. Tight loss-based confidence set

$$d\sqrt{\frac{T}{\kappa_{\star}(T)}} + d^2\kappa_{\mathcal{X}}(T)$$

 $dS^{\frac{3}{2}}\sqrt{\frac{T}{\kappa_{\star}(T)}} + \min\left\{d^2S^3\kappa_{\mathcal{X}}(T), R_{\mathcal{X}}(T)\right\}$

$$dS\sqrt{\frac{T}{\kappa_{\star}(T)}} + d^2S^6\kappa(T)$$

with Many New Tricks **Proof Sketch of Regret**

• regret :
$$\sum_{t}^{T} \mu(x_{t,\star}^{\top}\theta_{\star}) - \mu(x_{t}^{\top}\theta_{\star})$$
• Upper Bound :
$$\sum_{t}^{T} \mu(x_{t}^{\top}v_{t}) - \mu(x_{t}^{\top}\hat{\theta}_{t}) \text{ where } v_{t} \text{ is the point maximizing the}$$
• Taylor:
$$\sum_{t}^{T} \dot{\mu}(x_{t}^{\top}\hat{\theta}_{t})x_{t}^{\top}(v_{t} - \hat{\theta}_{t})$$
• With $H_{t} = \sum_{i=1}^{T} \dot{\mu}(x_{i}^{\top}\hat{\theta}_{i})x_{t}x_{t}^{\top}$, Cauchy-Schwartz
$$\sum_{t}^{T} \dot{\mu}(x_{t}^{\top}\hat{\theta}_{t}) \|x_{t}\|_{H_{t}^{-1}} \|v_{t} - \hat{\theta}_{t}\|_{H_{t}}$$
• $\|v_{t} - \hat{\theta}_{t}\|_{H_{t}}$ is bounded by the confidence radius
• Cauchy-Schwartz
$$\sum_{t}^{T} \dot{\mu}(x_{t}^{\top}\hat{\theta}_{t}) \|x_{t}\|_{H_{t}^{-1}} \leq \sqrt{\sum_{t}^{T} \dot{\mu}(x_{t}^{\top}\hat{\theta}_{t})} \sqrt{\sum_{t}^{T} \dot{\mu}(x_{t}^{\top}\hat{\theta}_{t}) \|x_{t}\|_{H_{t}^{-1}}}$$

• EPL can conclude this proof...

gap in confidence set

$$\sum_{t} \hat{\theta}_{t} \hat{\theta}_{t} \sqrt{\sum_{t} \dot{\mu}(x_{t}^{\mathsf{T}} \hat{\theta}_{t}) \|x_{t}\|_{H_{t}^{-1}}^{2}}$$

Improved Regret of Logistic Bandits **Experiments**

- •
- Synthetic experiments show that this is indeed beneficial, by a large margin!!

One may wonder, does shaving off dependencies on S really help in practice?

Conclusion

- **Regret-to-confidence-set conversion (R2CS):** a new framework that converts an 1. achievable online learning regret guarantee to a confidence set, without ever running the online algorithm explicitly.
- 2. We apply R2CS to obtain tightest confidence set for logistic losses, which then leads to the state-of-the-art regret guarantee of logistic bandits.
- PAC-Bayesian Bound can further enhance the confidence set! 3.
- 4. We empirically show that our new confidence-set based UCB algorithm attains the best performance.

Thank You