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ChatGPT

Al virtual assistant

ChatGPT

* The most successful Al service

* Strives to generate answers that align with
users' intentions

* Preference Alignment from
Human Feedback!!!

ChatGPT 40

Email for
plumber quote

©

Pick outfit to look What to do
good on camera with kids' art

ChatGPT can make mistakes. Check important info.

Python script for
daily email reports



RLHEK

Reinforcement Learning from Human Feedback

RLHF: a key ingredient of recent success of LLMs

Binary Preference Feedback Rewards for Reinforcement Learning

Human Feedback Reward Model Policy
- Reward
Conversation A ! Examples Train the policy using
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| Which example _J _J rA,TB @E learning to maximize
Conversation B is better? S A t7
exp(74) Y Tt.

n Minimize x-entropy loss of - -
— ] exp(74) +exp(75)
and the human labels.

Conversation Examples for Evaluation
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Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback



RLHEF’s Efficiency

RLHF significantly outperforms baselines

Ex> English Summarization Task
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Stiennon et al “Learning to summarize from human feedback”



Bradley-Terry Model

Probability model for pairwise comparisons

Bradley-Terry Model: a probability model for the outcome of pairwise comparisons
PG > j) ¢’ :

l — —

J eli + e'i 1 + e ~(ri=T))

» The probability that item i wins against item j is represented using reward scores r; and r;

* RLHF learns reward scores using the Bradley-Terry model

e’ wi

T
arg min — Z log
reR — e’ + el

* w, [ are the winner index and the loser index at the t-th comparison

* Questions: Uncertainty? Confidence? Reward Modes? Other Probability Models?
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Logistic Bandits 101

Motivation

» Useful in modeling exploration-exploitation dilemma with binary/discrete-valued
rewards and items’ feature vectors

 e.g., news recommendation (‘click’, ‘no click’), online ad placement (‘click’, ‘show
me later’, ‘never show again’, ‘no click’)

* Naive reduction to linear bandits is quite suboptimallLi et al., WWW’i0; ICMLWn1]!
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Logistic Bandits 101

Linear Contextual Bandit

Fort € |T]:

1. The learner observes a potentially infinite (contextual) arm-set X', C R4
2. The learner chooses x, € ', according to some policy

3. Receive a binary reward r, ~ Ber({x,, 6, ))

* @, isunknown to the learner

Goal:

T
Minimize Reg?(T) := Z ((xt,*, 0,) — (x, 6’*)), where x, , := argmax .o (X, 0, ).

=1 8



Logistic Bandits 101

Problem Setting

Fort € [T]:
1. The learner observes a potentially infinite (contextual) arm-set X', C R4

2. The learner chooses x, € &', according to some policy

3. Receive a binary reward r, ~ Ber(u({x,, 6, )))
* @, isunknown to the learner

* 1) = (1 + e~ 1is the logistic function, 4i(z) = u(2)(1 — u(z)) is its first derivative

Goal:

T
Minimize Reg®(T) := Z {,u((xt,*, 0,)) — u((x, «9*))}, where x, , 1= argmax, o (X, 0, ).

=1 9



Logistic Bandits 101

Preference Feedback

Preference Feedback:

* The agent selects a tuple (x, a, a’) to present to a human labeller

» Some papers consider a linear reward model ry (x, a) = (P(x,a), 0, ) where ¢ is a known
feature map

* The preference feedback follows the Bernoulli response such that a is preferred over a’ with
probability u({¢(x,a) — ¢(x,a’),0,))
Goal:

* How to find @, accurately within a given labeling budget?

* How to define a good confidence range of 0, ?
10



Logistic Bandits 101

Assumptions

Assumption 1. U 2, C BY1)

=1

Assumption 2. 0, € B4(S) => today’s main quantity of interest!

We consider the following quantities describing the difficulty of the problem:

-1
| § N 1
1) = (?Z}”(W*’ 9*”) R (5.0

They can scale exponentially in S [Faury et al., ICML20]
11



Logistic Bandits 101

d\/T/k,(T) is minimax optimal (taken from slides of L. Faury on his website)

Theorem 2. [Local Lower-Bound; Abeille et al., AIsTATS21] Let 27, = S%(1) and . Then, for any problem instance @, and for T > d’«, (6, ), there
exists € > 0 such that:

Ky (04)

min  max E[Reg; ]>Q]|d
. policy 10—, [l,<e; ,

* More nonlinear (flatter tail), the easier! x .
* Transient regret (small 7): B s 0. o
* Exploration of “detrimental” arms
* Permanent regret (large 1): S';Ope L
* Sub-linear regret, as the estimate is e e
sufficiently close to 0, (
* Linear bandit with local slope around &, b @0, oo, m*((’i)Tﬂ* Bl
(x 0.) ~ — 4= ko exp([64]]) < w exp([6.1]) < k. =

K'*(T) (a) Assymetric arm-set. (b) Symmetric arm-set (unit-ball).



Logistic Bandits 101

State-of-the-Arts, so-far

* OFULOg [Abeille et al., AISTATS211. Non-convex confidence-set-based UCB algorithm

3 T ,
dSz\/K*(T) F min {dZS3K&/'(T),R&v(T)}

* OFULOgZ-r [Abeille et al., AISTATS21]. Convex relaxation of OFULog ~ loss-based confidence set

5 T ,
dSz\/K*(T)  min {d254l<&»(T),R5[(T)}

° ada-OFU-ECOLog [Faury et al., AISTATS 22]. Online Newton Step [Hazan et al., 2007]-ba86d algorithm

T
dS\/ + d?S%(T)
K*(T)

Can we construct tighter (improved dependency in 5) loss-based confidence set??
13



Logistic Bandits 101

More details in OFULog(-r)

* OFULog and OFULog-r are of the following form:

—1
. Solve 0, = argmingps | Z(0) 2 Y £,(0) + 4/|0]I3 | , where

s=1

£(0) .= —rilog u((x,, 0)) — (1 — rolog(l — u({x,, 6)))
2. Obtain a confidence-set C,(d) C [t 4(S) satisfying P [‘v’t > 1,0, € Ct((‘})] >1—-0.

3. Solve (x,, 0) = argmax,c o gecH(X, 0)), play x; and observe a reward r,

14
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Logistic Bandits 101

More details in OFULog(-r)

o OFULOg [Abeille et al., AISTATS 21]:

C,(0) := {6’ e BYS) : VZ(0) — Vth(é’\t) 0 <0 (\/dSlogt)}

§~~
.....

* OFULOE-r [Abeille et al., AISTATS21]:

() = {e e BYUS) : £(0)— L (0,) <0 (\/ ds3 logt) }

The multiplicative S’s comes from rather naive applications of self-concordant (| ji| < p)
analyses [Bach, 2010]

15



Logistic Bandits 101

Gradient and Confidence set ammmmea
"¢’ ~~~ ?t(6)
, ! co)
* Gradient '.‘

—1 1 “‘
VL0 = ), (u((x,.0,)) = 1,) x, + 22,0 ".
. s=1 b |
Martingale Sum J “\ :

* The gradient at 6, should be near zero! .y

§~.
..-'

* The confidence check can be done with the inverse of Hessian (covariance)

—1
H©O,) = ) i((x, 0 0)xx] + Al
s=1

* However, we should compute gradient and Hessian for all 8

* Gradient -> Loss conversion can formulate a convex confidence set, albeit not a tightly bound one
16



Regret-to-Confidence-Set Conversion (R2CS)

Main Theorem - Improved Confidence Set for Logistic Loss

* Let us consider norm-constrained, unregularized MLE:

—1
0, .= argmingcgys) [Z(0) := Z Z(0)|,where £ (0) .= —r logu((x,0)) — (1 —rylog(l — u({x,, 6)))
s=1

Theorem 1. [Lee et al., AISTATS24] We have P [Vt > 1, 9* = Ct(é)] > 1 — o, where

C(3) = {0 € BUS): 20) - (8) < f67 .

St |
P(0) := \/lOd log (4_51 + e) + 2((e — 2) + S)log ry = @(\/(d + S)log 1)

Strict improvement over prior confidence-set radius of O (\/ ds- log t)
17



Regret-to-Confidence-Set Conversion (R2CS)

Proof Sketch of Theorem 1

Decomposing the logistic loss with any online learning algorithm 5’5:

t—1 t—1 t—1
L0, - 20)=Y £0)-£0) =Y (fs(es) _ fs(et)) + Y (0, - £,6))
s=1

® S:l S:1

—1 k —1 Regvo(f) - C(f)=éul6)—§2(f)
where £,(1) = 3 £, 8,— 0, G0 = 3 KL(ty((x, 0,0 1((x, 6,))
s=1

s=1
» Reg?(7) is the online regret up to time ¢, and ((7) is the superiority of the online learning
algorithm in terms of loss compared to 6, which is expected very small (independent to #) with
high probability since 6_is the problem instance parameter

* 0, is the optimal parameter for the entire batch while és is online
18



Regret-to-Confidence-Set Conversion (R2CS)

Proof Sketch of Theorem 1

Decomposing the logistic loss such that the ﬁt(é)2 is expressed as a sum of

Reg()( 1), regret of any online learning algorithm of our choice, (), a sum of
martingales, and =(,(1), a (negative) sum of Kl .-divergences.

2. For Reg?(f), we utilize the state-of-the-art online regret of Foster et al., (COLT"18),
which reduces the usual dS to d log S, without ever running the algorithm.

3. For (,(f), we utilize a novel anytime variant of the Freedman’s concentration
inequality [Freedman, 1975] for martingales.

4. For =(,(1), we utilize the Bregman geometrical interpretation of the KL-
divergence, along with self—concordanggresults.



Regret-to-Confidence-Set Conversion (R2CS)

Proof of Theorem 1

2. For Reg?(r), we utilize the state-of-the-art online regret of Foster et al., (COLT"18), which reduces the usual
dS to d log S, without ever running the algorithm.

Theorem [Foster et al., coLT18] There exists an (improper learning) algorithm for online
logistic regression with the following regret:

Reg’(r) < 10d 1o ﬂ+e
SR\ )

Note how we get d log S instead of dS!! Even better, we get this without ever running the

algorithm, which in this case, is quite expensive!
20



Related Work: Online-to-Something Conversions

Online Learning -> Concentration of Measure

Online-to-confidence-set: Start from some online learning algorithm & with regret

[
Z Z(0,) —¢(0,) < B(1), then bound LHS to obtain a quadratic-type confidence set on @, that

s=1
depends on the outputs of &/ whose radius scales with B(7) [Abbasi-Yadkori et al., AISTATS 12; Jun et al., NeurIPS'17]

Advantages of O2SC: “progress in constructing better algorithms for online prediction problems
directly translates into tighter confidence sets” [Abbasi-Yadkori et al., AISTATS 12]; See Chapter 23.3 of
Lattimore and Szepesvari (2020)

BUT, what if the online prediction problem has a trade-off between computational complexity and
regret??

e.g., online logistic regression: good regret & bad computational complexity [Foster et al,, COLT"18] OF
worse regret & good computational complexity [Jézéquel et al., COLT 20]

Our algorithm does not run the online learning part!



Improved Regret of Logistic Bandits

OFULog+

* Note that our algorithm is of the same form with OFULog-r, except we’ve only changed the

confidence set radius, O <\/ dsS> log t) to O (\/ (d+ S)log t), which we call OFULog+

Theorem 2. [Lee et al, AISTATS24] OFULOg+ incurs the following regret bound w.p. at least 1 — 6:

T
\ Ky (1)

permanent term

Reg?(T) < dS

+ min {d*S*ko(T), Ro(T) }

transient term

22



Improved Regret of Logistic Bandits

OFULog+ is the state-of-the-art, taking S into account

OFULoOg [Abeille et al., AISTATS211. Non-convex confidence-set-based UCB algorithm

; T ,
dSz\/ ™o  min {d*S"kq(T), Ro(T) |

OFULOg-r [Abeille et al., AISTATS21]. Convex relaxation of OFULog

2 I L s 24
ds \/ T min {d*S*kq(T),Ro(T) }

ada-OFU-ECOLOg [Faury et al., AISTATS22]. Online Newton step (ONS) [Hazan et al., 20071-based algorithm

T
ds - d?S%(T)
K*(T)

OFULoOg+ [Lee et al,, AISTATS24]. Tight loss-based confidence set

T .
dS\/ il min {d*S*ko(T), Re(T) }



New Conftidence Set!

Likelihood Ratio-Based Confidence Set

S
. Let L, be the Lipschitz constant of &£, which is bounded above by (1 + 5)(t — 1)

Theorem 3. [Lee et al., pre-print] We have | [Vt > 1, (9* = Ct(é)] > ] — 5, where

C(8) = {0 € BYS) : £.0) - (D)) < p(6? ],

1 2SL,
p0) =1+ logg + d log y

Remove S dependency!
24



Martingale Log-Likelihood

Proof Sketch of Theorem 3

Let M(0) = exp(fZ 0,)—Z t(6’)). Then, it is easy to check M (6) is a non-negative
Martingale.

Lemma. For any data-independent prior Q, the following holds:

| (Elt: CoolM(0)] > log l) <0

0

25



Time-Uniform PAC-Bayesian Bound

Proof Sketch of Theorem 3

We follow the usual recipes for deriving time-uniform PAC-Bayesian bound (Alquier,
2024; Chugg et al., 2023):

Lemma. For any data-independent prior ) and any sequence of adapted posterior
distributions (possibly learned from the data) { P, }, the following holds:

|
[ (Elt . Z(0,) — By p[Z(0)] > log r + Dy (l tHQ)) <

Our novelty is the choice of Q and {P,}

Q = Unif(®), P, = Unif(®,2 (1 -0c)0,+ cO)

26



Improved Regret of Logistic Bandits

OFULog+ is the state-of-the-art, taking S into account

OFULoOg [Abeille et al., AISTATS211. Non-convex confidence-set-based UCB algorithm

; T ,
dSz\/ ™o  min {d*S"kq(T), Ro(T) |

OFULOg-r [Abeille et al., AISTATS21]. Convex relaxation of OFULog

2 I L s 24
ds \/ T min {d*S*kq(T),Ro(T) }

ada-OFU-ECOLOg [Faury et al., AISTATS22]. Online Newton step (ONS) [Hazan et al., 20071-based algorithm

T
ds - d?S%(T)
K*(T)

OFULoOg++ [Lee et al., pre-print 24]. Tight loss-based confidence set

d ! F d%ico(T)
Ky(T) | i




with Many New Tricks

Proof Sketch of Regret

regret : ) u(x,0,) — pu(x'0,)
4

Upper Bound : Z w(x'v) — ux! @t) where v, is the point maximizing the gap in confidence set

[

T
Taylor: Z /ft(XtT Qt)xt (v, — ;)
!

T

With H, = 2 ﬂ(xiTéA’l-)xtxt , Cauchy-Schwartz 2 1i(xT0)|1x | -1V — 0, H
i=1

v, — étH A bounded by the confidence radius

T T
Cauchy-Schwartz Z //t(xt_ré’t)HXtHH_ \ 2 ﬂ(xt_r@t)\ 2 ﬂ(XtTHt)HXtH%{;l
t

EPL can conclude this proof...



Improved Regret of Logistic Bandits

Experiments

* One may wonder, does shaving off dependencies on § really help in practice?

* Synthetic experiments show that this is indeed beneficial, by a large margin!!

[ e N A 6
100 __ oryLog+ * — OFULog+ Y 6,0
OFUGLB 33 OFUGLB // | | O\ 6 | o
30 B 6. .6. \
20 4 | OFUGLB
15 ‘ OFUGLB .
— e o '
- —T— FUlog,L 7 OFULog+
1 2 3 4 5 2 4 6 8
(b) S =10 (c) § = d) S =10
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Conclusion

Regret-to-confidence-set conversion (R2CS): a new framework that converts an
achievable online learning regret guarantee to a confidence set, without ever
running the online algorithm explicitly.

We apply R2CS to obtain tightest confidence set for logistic losses, which then
leads to the state-of-the-art regret guarantee of logistic bandits.

PAC-Bayesian Bound can further enhance the confidence set!

We empirically show that our new confidence-set based UCB algorithm attains the
best performance.

30
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