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ChatGPT

ChatGPT 

• The most successful AI service 

• Strives to generate answers that align with  
users' intentions 

• Preference Alignment from  
Human Feedback!!! 

AI virtual assistant
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RLHF

RLHF: a key ingredient of recent success of LLMs 

Reinforcement Learning from Human Feedback

Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback
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RLHF’s Efficiency

Ex> English Summarization Task 

RLHF significantly outperforms baselines

Stiennon et al “Learning to summarize from human feedback”
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Bradley-Terry Model 

Bradley-Terry Model: a probability model for the outcome of pairwise comparisons 

 

• The probability that item i wins against item j is represented using reward scores  and  

• RLHF learns reward scores using the Bradley-Terry model 

 

•  are the winner index and the loser index at the t-th comparison 

• Questions: Uncertainty? Confidence? Reward Modes? Other Probability Models?

ℙ(i > j) =
eri

eri + erj
=

1
1 + e−(ri−rj)

ri rj

arg min
r∈ℛ

−
T

∑
t=1

log
erwt

erwt + erlt

wt, lt

Probability model for pairwise comparisons
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Improved Regret Bounds of (Multinomial) Logistic 
Bandits via Regret-to-Confidence-Set Conversion



Logistic Bandits 101

• Useful in modeling exploration-exploitation dilemma with binary/discrete-valued 
rewards and items’ feature vectors 

• e.g., news recommendation (‘click’, ‘no click’), online ad placement (‘click’, ‘show 
me later’, ‘never show again’, ‘no click’) 

• Naive reduction to linear bandits is quite suboptimal[Li et al., WWW’10; ICMLW’11]!

Motivation
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Logistic Bandits 101

For : 

1. The learner observes a potentially infinite (contextual) arm-set  

2. The learner chooses  according to some policy 

3. Receive a binary reward  
•  is unknown to the learner 

Goal: 

Minimize , where .

t ∈ [T]

𝒳t ⊂ ℝd

xt ∈ 𝒳t

rt ∼ Ber(⟨xt, θ⋆⟩)
θ⋆

RegB(T) :=
T

∑
t=1

(⟨xt,⋆, θ⋆⟩ − ⟨xt, θ⋆⟩) xt,⋆ := argmaxx∈𝒳t
⟨x, θ⋆⟩

Linear Contextual Bandit
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Logistic Bandits 101

For : 

1. The learner observes a potentially infinite (contextual) arm-set  

2. The learner chooses  according to some policy 

3. Receive a binary reward  
•  is unknown to the learner 

•  is the logistic function,  is its first derivative 

Goal: 

Minimize , where .

t ∈ [T]

𝒳t ⊂ ℝd

xt ∈ 𝒳t

rt ∼ Ber(μ(⟨xt, θ⋆⟩))
θ⋆

μ(z) := (1 + e−z)−1 ·μ(z) = μ(z)(1 − μ(z))

RegB(T) :=
T

∑
t=1

{μ(⟨xt,⋆, θ⋆⟩) − μ(⟨xt, θ⋆⟩)} xt,⋆ := argmaxx∈𝒳t
⟨x, θ⋆⟩

Problem Setting
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Logistic Bandits 101

Preference Feedback: 

• The agent selects a tuple (x, a, a′ ) to present to a human labeller 

• Some papers consider a linear reward model  where  is a known 
feature map 

•  The preference feedback follows the Bernoulli response such that a is preferred over a’ with 
probability   

Goal: 

• How to find  accurately within a given labeling budget? 

• How to define a good confidence range of ? 
 

rθ⋆
(x, a) = ⟨ϕ(x, a), θ⋆⟩ ϕ

μ(⟨ϕ(x, a) − ϕ(x, a′￼), θ⋆⟩)

θ⋆

θ⋆

Preference Feedback
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Logistic Bandits 101

Assumption 1.   

Assumption 2.   => today’s main quantity of interest! 

We consider the following quantities describing the difficulty of the problem: 

 

They can scale exponentially in  [Faury et al., ICML’20]

∞

⋃
t=1

𝒳t ⊆ Bd(1)

θ⋆ ∈ Bd(S)

κ⋆(T) := ( 1
T

T

∑
t=1

·μ(⟨xt,⋆, θ⋆⟩))
−1

, κ𝒳(T) := max
t∈[T]

max
x∈𝒳t

1
·μ(⟨x, θ⋆⟩)

.

S

Assumptions
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Logistic Bandits 101

Theorem 2. [Local Lower-Bound; Abeille et al., AISTATS’21]  Let  and . Then, for any problem instance  and for , there 
exists  such that: 

𝒳t = Sd(1) θ⋆ T ≥ d2κ⋆(θ⋆)
ϵT > 0

min
π: policy

max
∥θ−θ⋆∥2≤ϵT

𝔼[RegB
θ,π] ≥ Ω d

T
κ⋆(θ⋆)

.

 is minimax optimal (taken from slides of L. Faury on his website)d T/κ⋆(T)

• More nonlinear (flatter tail), the easier! 

• Transient regret (small ): 

• Exploration of “detrimental” arms 

• Permanent regret (large ): 

• Sub-linear regret, as the estimate is 
sufficiently close to  

• Linear bandit with local slope around , 

t

t

θ⋆

θ⋆
·μ(⟨x⋆, θ⋆⟩) ∼

1
κ⋆(T )
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Logistic Bandits 101

• OFULog [Abeille et al., AISTATS’21]. Non-convex confidence-set-based UCB algorithm 

 

• OFULog-r [Abeille et al., AISTATS’21]. Convex relaxation of OFULog ~ loss-based confidence set 

 

• ada-OFU-ECOLog [Faury et al., AISTATS’22]. Online Newton step [Hazan et al., 2007]-based algorithm 

 

Can we construct tighter (improved dependency in ) loss-based confidence set?? 

dS
3
2

T
κ⋆(T )

+ min {d2S3κ𝒳(T ), R𝒳(T )}

dS
5
2

T
κ⋆(T )

+ min {d2S4κ𝒳(T ), R𝒳(T )}

dS
T

κ⋆(T )
+ d2S6κ(T )

S

State-of-the-Arts, so-far
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Logistic Bandits 101

• OFULog and OFULog-r are of the following form: 

1. Solve  , where 

 

2. Obtain a confidence-set  satisfying . 

3. Solve , play  and observe a reward  

̂θ t = argminθ∈ℝd [ℒt(θ) ≜
t−1

∑
s=1

ℓs(θ) + λt∥θ∥2
2]

ℓs(θ) := − rs log μ(⟨xs, θ⟩) − (1 − rs)log(1 − μ(⟨xs, θ⟩))

Ct(δ) ⊆ 𝔹d(S) ℙ [∀t ≥ 1, θ⋆ ∈ Ct(δ)] ≥ 1 − δ

(xt, θt) = argmaxx∈𝒳t,θ∈Ct(δ)μ(⟨x, θ⟩) xt rt

More details in OFULog(-r)
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Logistic Bandits 101

• OFULog [Abeille et al., AISTATS’21]:   

  

• OFULog-r [Abeille et al., AISTATS’21]:  

 

The multiplicative ’s comes from rather naive applications of self-concordant ( ) 
analyses [Bach, 2010] 

Ct(δ) := {θ ∈ 𝔹d(S) : ∇ℒt(θ) − ∇ℒt( ̂θ t) H−1
t (θ)

≤ 𝒪 ( dS log t)}
ℰt(δ) := {θ ∈ 𝔹d(S) : ℒt(θ) − ℒt( ̂θ t) ≤ 𝒪 ( dS3 log t)}

S | ··μ | ≤ ·μ

More details in OFULog(-r)
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Logistic Bandits 101

• Gradient 

•
   

• The gradient at  should be near zero! 

• The confidence check can be done with the inverse of Hessian (covariance) 

 

• However, we should compute gradient and Hessian for all  

• Gradient -> Loss conversion can formulate a convex confidence set, albeit not a tightly bound one

∇ℒt(θ⋆) =
t−1

∑
s=1

(μ(⟨xs, θ⋆⟩) − rs) xs

Martingale Sum

+ 2λtθ

θ⋆

H(θ⋆) =
t−1

∑
s=1

·μ(⟨xs, θ⋆⟩)xsx⊤
s + λI

θ

Gradient and Confidence set
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Regret-to-Confidence-Set Conversion (R2CS)

• Let us consider norm-constrained, unregularized MLE: 

, where  

Theorem 1. [Lee et al., AISTATS’24]  We have , where 

 

 

Strict improvement over prior confidence-set radius of 

̂θ t := argminθ∈𝔹d(S) [ℒt(θ) :=
t−1

∑
s=1

ℓs(θ)] ℓs(θ) := − rs log μ(⟨xs, θ⟩) − (1 − rs)log(1 − μ(⟨xs, θ⟩))

ℙ [∀t ≥ 1, θ⋆ ∈ Ct(δ)] ≥ 1 − δ

Ct(δ) := {θ ∈ 𝔹d(S) : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2},

βt(δ) := 10d log ( St
4d

+ e) + 2((e − 2) + S)log
1
δ

= 𝒪( (d + S)log t)

𝒪 ( dS3 log t)

Main Theorem - Improved Confidence Set for Logistic Loss
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Regret-to-Confidence-Set Conversion (R2CS)

Decomposing the logistic loss with any online learning algorithm : 

•

where  

•  is the online regret up to time , and   is the superiority of the online learning 
algorithm in terms of loss compared to  which is expected very small (independent to ) with 
high probability since  is the problem instance parameter 

•  is the optimal parameter for the entire batch while  is online

θ̃s

ℒt(θ⋆) − ℒt( ̂θ t) =
t−1

∑
s=1

ℓs(θ⋆) − ℓs( ̂θ t) =
t−1

∑
s=1

(ℓs(θ̃s) − ℓs( ̂θ t))
RegO(t)

+
t−1

∑
s=1

(ℓs(θ⋆) − ℓs(θ̃s))

ζ(t)=ζ1(t)−ζ2(t)

ζ1(t) :=
t−1

∑
s=1

ξs⟨xs, θ̃s − θ⋆⟩, ζ2(t) :=
t−1

∑
s=1

KL(μs(⟨xs, θ⋆⟩), μs(⟨xs, θ̃s⟩))

RegO(t) t ζ(t)
θ⋆ t

θ⋆

̂θt θ̃s

Proof Sketch of Theorem 1
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Regret-to-Confidence-Set Conversion (R2CS)

1. Decomposing the logistic loss such that the  is expressed as a sum of 
, regret of any online learning algorithm of our choice, , a sum of 

martingales, and , a (negative) sum of KL-divergences. 

2. For , we utilize the state-of-the-art online regret of Foster et al., (COLT’18), 
which reduces the usual  to , without ever running the algorithm. 

3. For , we utilize a novel anytime variant of the Freedman’s concentration 
inequality [Freedman, 1975] for martingales. 

4. For , we utilize the Bregman geometrical interpretation of the KL-
divergence, along with self-concordant results.

βt(δ)2

RegO(t) ζ1(t)
−ζ2(t)

RegO(t)
dS d log S

ζ1(t)

−ζ2(t)

Proof Sketch of Theorem 1
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Regret-to-Confidence-Set Conversion (R2CS)

2. For , we utilize the state-of-the-art online regret of Foster et al., (COLT’18), which reduces the usual 
 to , without ever running the algorithm. 

Theorem [Foster et al., COLT'18]  There exists an (improper learning) algorithm for online 
logistic regression with the following regret: 

 

Note how we get  instead of !! Even better, we get this without ever running the 
algorithm, which in this case, is quite expensive! 

RegO(t)
dS d log S

RegO(t) ≤ 10d log ( St
4d

+ e) .

d log S dS

Proof of Theorem 1
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Related Work: Online-to-Something Conversions

Online-to-confidence-set: Start from some online learning algorithm  with regret 

, then bound LHS to obtain a quadratic-type confidence set on  that 

depends on the outputs of  whose radius scales with  [Abbasi-Yadkori et al., AISTATS’12; Jun et al., NeurIPS’17] 

Advantages of O2SC: “progress in constructing better algorithms for online prediction problems 
directly translates into tighter confidence sets” [Abbasi-Yadkori et al., AISTATS’12]; see Chapter 23.3 of 
Lattimore and Szepesvári (2020) 

BUT, what if the online prediction problem has a trade-off between computational complexity and 
regret?? 

e.g., online logistic regression: good regret & bad computational complexity [Foster et al., COLT’18] or 
worse regret & good computational complexity [Jézéquel et al., COLT’20] 

Our algorithm does not run the online learning part!

𝒜
t

∑
s=1

ℓs(θs) − ℓs(θ⋆) ≤ B(t) θ⋆

𝒜 B(t)

Online Learning -> Concentration of Measure



Improved Regret of Logistic Bandits

• Note that our algorithm is of the same form with OFULog-r, except we’ve only changed the 

confidence set radius,  to , which we call OFULog+ 

Theorem 2. [Lee et al., AISTATS’24]  OFULog+ incurs the following regret bound w.p. at least : 

 

𝒪 ( dS3 log t) 𝒪 ( (d + S)log t)

1 − δ

RegB(T) ≲ dS
T

κ⋆(T)

permanent term

+ min {d2S2κ𝒳(T), R𝒳(T)}
transient term

OFULog+
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Improved Regret of Logistic Bandits

• OFULog [Abeille et al., AISTATS’21]. Non-convex confidence-set-based UCB algorithm 

 

• OFULog-r [Abeille et al., AISTATS’21]. Convex relaxation of OFULog 

 

• ada-OFU-ECOLog [Faury et al., AISTATS’22]. Online Newton step (ONS) [Hazan et al., 2007]-based algorithm 

 

• OFULog+ [Lee et al., AISTATS’24]. Tight loss-based confidence set 

dS
3
2

T
κ⋆(T )

+ min {d2S3κ𝒳(T ), R𝒳(T )}

dS
5
2

T
κ⋆(T )

+ min {d2S4κ𝒳(T ), R𝒳(T )}

dS
T

κ⋆(T )
+ d2S6κ(T )

dS
T

κ⋆(T )
+ min {d2S2κ𝒳(T ), R𝒳(T )}

OFULog+ is the state-of-the-art, taking  into accountS



New Confidence Set!

• Let  be the Lipschitz constant of  which is bounded above by  

Theorem 3. [Lee et al., pre-print]  We have , where 

 

 

Remove S dependency!

Lt ℒt (1 +
S
2

)(t − 1)

ℙ [∀t ≥ 1, θ⋆ ∈ Ct(δ)] ≥ 1 − δ

Ct(δ) := {θ ∈ 𝔹d(S) : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2},

βt(δ) := 1 + log
1
δ

+ d log
2SLt

d

Likelihood Ratio-Based Confidence Set
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Martingale Log-Likelihood

Let . Then, it is easy to check  is a non-negative 
Martingale. 

Lemma. For any data-independent prior , the following holds: 

 

Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ)) Mt(θ)

ℚ

ℙ (∃t : 𝔼θ∼ℚ[Mt(θ)] ≥ log
1
δ ) ≤ δ

Proof Sketch of Theorem 3
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Time-Uniform PAC-Bayesian Bound

We follow the usual recipes for deriving time-uniform PAC-Bayesian bound (Alquier, 
2024; Chugg et al., 2023):  

Lemma. For any data-independent prior  and any sequence of adapted posterior 
distributions (possibly learned from the data) , the following holds: 

 

Our novelty is the choice of  and  

ℚ
{ℙt}

ℙ (∃t : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

ℚ {ℙt}

ℚ = Unif(Θ), ℙt = Unif( Θ̃ t ≜ (1 − c) ̂θ t + cΘ)

Proof Sketch of Theorem 3
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Improved Regret of Logistic Bandits

• OFULog [Abeille et al., AISTATS’21]. Non-convex confidence-set-based UCB algorithm 

 

• OFULog-r [Abeille et al., AISTATS’21]. Convex relaxation of OFULog 

 

• ada-OFU-ECOLog [Faury et al., AISTATS’22]. Online Newton step (ONS) [Hazan et al., 2007]-based algorithm 

 

• OFULog++ [Lee et al., pre-print 24]. Tight loss-based confidence set 

dS
3
2

T
κ⋆(T )

+ min {d2S3κ𝒳(T ), R𝒳(T )}

dS
5
2

T
κ⋆(T )

+ min {d2S4κ𝒳(T ), R𝒳(T )}

dS
T

κ⋆(T )
+ d2S6κ(T )

d
T

κ⋆(T )
+ d2κ𝒳(T )

OFULog+ is the state-of-the-art, taking  into accountS



with Many New Tricks

• regret :  

• Upper Bound :  where  is the point maximizing the gap in confidence set 

• Taylor:  

• With , Cauchy-Schwartz  

•  is bounded by the confidence radius  

• Cauchy-Schwartz  

• EPL can conclude this proof…

T

∑
t

μ(x⊤
t,⋆θ⋆) − μ(x⊤

t θ⋆)

T

∑
t

μ(x⊤
t vt) − μ(x⊤

t
̂θt) vt

T

∑
t

·μ(x⊤
t

̂θt)x⊤
t (vt − ̂θt)

Ht =
T

∑
i=1

·μ(x⊤
i

̂θi)xtx⊤
t

T

∑
t

·μ(x⊤
t

̂θt)∥xt∥H−1
t

∥vt − ̂θt∥Ht

∥vt − ̂θt∥Ht

T

∑
t

·μ(x⊤
t

̂θt)∥xt∥H−1
t

≤
T

∑
t

·μ(x⊤
t

̂θt)
T

∑
t

·μ(x⊤
t

̂θt)∥xt∥2
H−1

t

Proof Sketch of Regret



Improved Regret of Logistic Bandits

• One may wonder, does shaving off dependencies on  really help in practice? 

• Synthetic experiments show that this is indeed beneficial, by a large margin!!

S

Experiments
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Conclusion

1. Regret-to-confidence-set conversion (R2CS): a new framework that converts an 
achievable online learning regret guarantee to a confidence set, without ever 
running the online algorithm explicitly. 

2. We apply R2CS to obtain tightest confidence set for logistic losses, which then 
leads to the state-of-the-art regret guarantee of logistic bandits. 

3. PAC-Bayesian Bound can further enhance the confidence set! 

4. We empirically show that our new confidence-set based UCB algorithm attains the 
best performance. 
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Thank You
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