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Stochastic LQR

For random noise ωt ,

The dynamics is given by

xt+1 = Axt + But + ωt

The cost is given by

J = E[
N−1∑
t=0

(x⊤
t Qxt + u⊤

t Rut) + x⊤
N Qf xN ]

where the expectation is taken over all noises.

A goal is to find the control sequence u1, ..., uN−1 minimizing the cost.



Bellman’s Equation for stochastic LQR

Let us begin by defining

with VN(z) = z⊤Qf z as before. Deduce that

One can infer that
Vt(z) = z⊤Ptz + rt

.



Bellman’s Equation for stochastic LQR

Substituting Vt(z) = z⊤Ptz + rt ,

As a result,



Infinite horizon LQR

We want to optimize

lim
N→∞

1

N
E

N−1∑
t=0

(x⊤
t Qxt + u⊤

t Rut) + x⊤
N Qf xN

subject to xt+1 = Axt + But + ωt , with x(0) = x0 has a finite value if the
system does not grow rapidly. Otherwise, the cost will be infinity.

Theorem

Assume (A,B) is controllable and (A,
√
Q) is observable. Then, there exists

positive definite matrix P such that limt→∞ Pt = P solving the Riccati
equation:

P = A⊤PA+ Q − A⊤PB(B⊤PB + R)−1B⊤PA.

Moreover, the spectral radius of A+ BK is strictly less than 1 where
K = −(BPB + R)−1B⊤PA.



Learning infinite horizon LQR

What if A and B are unknown? our goal is to design an algorithm that can
learn the unknown system parameters minimizing the regret.



Problem setup

Consider a linear stochastic system of the form

xt+1 = Axt + But + wt , t = 1, 2, . . . ,

with cost

Jπ(θ) := lim sup
T→∞

1

T
Eπ

[ T∑
t=1

c(xt , ut)

]
.

Then of our interest is how we can minimize the regret:

where J∗ is the infimum over all policies.



Various approaches

Force exploration : Regret can have strong worst-case regret

OFU : Construct high-probability confidence set and optimize in the set.
Frequentist regret O(

√
T ) yet computationally unfavorable.

1 Abbasi-Yadkori (2011)
2 Abeille (2020) - Lagrange relaxation

Beyesian : Only keep track posterior (with belief) and obtain expected

regret. O(
√
T ) is achieved.

1 Ouyang (2019) - unverifiable set
2 Abeille (2018, 2020) - 1D
3 Kargin (2022) - extension to high dimensional space



Assumption and notation

Let us define

Θ :=
[
Θ(1) · · · Θ(n)

]
:=

[
A B

]⊤
,

with vectorization θ and zt := (xt , ut), hence,

xt+1 = θ⊤zt + wt

Subgaussian noise (Abbasi-Yadkori, 2011)

We know that optimal action is something like ut = Kxt . However if bad K is
chosen, xt = (A+ BK)tx0 will blow up.



Feasible set

We assume that the unknown system parameter Θ∗ is contained in

The condition implies (A,B) is stabilizable, i.e., there exists K such that

ρ(A+ BK) < 1



Optimality and stability

When (A,B) is stabilizable,

The Riccati equation has a unique positive semidefinite solution P, i.e.

P(θ) = Q + A⊤P(θ)A− A⊤P(θ)B(R + B⊤P(θ)B)−1B⊤P(θ)A.

The gain matrix K(θ) := −(R + B⊤P(θ)B)−1B⊤P(θ)A statbilizes the
system parameter.

The optimal cost is given by

J(θ) = tr(WP(θ)),

whrere W is the covariance matrix for noise distribution



Construction of confidence sets

Using the least square as before

whose solution is given by

Let Vt = λI +
∑t−1

i=0 ziz
⊤
i be the regularizaed design matrix underlying the

covariates. Define



Construction of confidence sets

Now we choose optimal parameter as



OFU algorithm



Regret analysis

Optimization is computationally unfavorable

It is a frequentist regret (no expectation)

log(1/δ) is annoying !



Bayesian regret via Thompson sampling

What is Thompson sampling : sample from the posterior distribution,
choose an optimal action believing it is optimal

Successful in many settings, bandit, MDP, ...

Caveat is ’how to sample?’



Posterior update

Assume wt follows Gaussian. Let zt := (xt , ut) ∈ Rd . Then, the system
equation can be expressed as

xt+1 −Θ⊤zt = wt ∼ pw ,

which implies that

p(xt+1|zt , θ) = pw (xt+1 −Θ⊤zt |zt , θ),

The posterior at (t + 1)-th time step is given by

p(θ|ht+1) ∝ p(xt+1|zt , θ)p(θ|ht)

= pw (xt+1 −Θ⊤zt |zt , θ)p(θ|ht).



Posterior update - Gaussian

’Posterior Sampling-based Reinforcement Learning for Control of Unknown
Linear Systems’ by Ouyang (2019)



Algorithm



Regret

Theorem (Ouyang (2019))

The expected regret is upper bounded by
√
T log(T )



How do we choose the prior?

Assume that there exists Ω1 such that there exists δ < 1 satisfying

∥A∗ + B∗K(θ)∥ ≤ ρ < 1

for all θ ∈ Ω

Stabilizatoin through random actions are discussed in two papers by M.
Faradonbeh in series of works;

Finite Time Adaptive Stabilization of Linear Systems (2019)

On adaptive linear–quadratic regulators (2020)



More questions..

Can we allow general class of admissible sets while obtaining the same or
better regret?

Can we deal with more general class of noises?



Langevin Monte Carlo

Consider the problem of sampling from a probability distribution with density
p(x) ∝ e−U(x), where the potential function U : Rnx → R is continuously
differentiable. The Langevin dynamics takes the form of

dXt = −∇U(Xt)dt +
√
2dBt ,

Assumption

The potential U is m-convex and L-smooth, that is,

m ⪯ ∇2U ⪯ L

In a continuous regime, the convergence is well-established.

For a functional,
F : ρ 7→ DKL(ρ||e−U),

∂ρt
∂t

= −grad F (ρt)

Convergence is exponential.



Sampling via Unadjusted Langevin Algorithm

For implementation, we need discretization in time.

Apply the Euler-Maruyama discretization to the Langevin dynamics and
obtain the following unadjusted Langevin algorithm (ULA):

Xj+1 = Xj − γj∇U(Xj) +
√

2γjWj ,

where (Wj)j≥1 is an i.i.d. sequence of standard nx -dimensional Gaussian
random vectors, and (γj)j≥1 is a sequence of step sizes.

Xt can be used as a sample after enough iterations.



Convergence of ULA

Theorem

Suppose that pdf p(x) ∝ e−U(x) is strongly log-concave and Lipschitz smooth
with respect to x , i.e., λmin ⪯ ∇2U(x) ⪯ λmax for some λmax, λmin > 0. Let step
size

γj ≡ γ = O(
λmin(∇2U)

λmax(∇2U)2
),

and the number of iterations N

N = O

(
(
λmax

λmin
)2
)
.

Given X0 = argminU(x), let pN denote the pdf of XN . Then, the following
inequality holds:

Ex∼p,x̃∼pN

[
|x − x̃ |2

] 1
2 ≤ O

(√
1

λmin

)
.



Bayesian update in our setting

Relaxed assumptions on noises.

Assumption

For every t = 1, 2, . . ., the i.i.d. noise vector wt satisfies the following
properties:

1 The probability density function (pdf) of noise pw (·) is known, smooth and twice
differentiable. Additionally, the following inequalities hold:

mI ⪯ −∇2
wt

log pw (wt) ⪯ mI

m,m > 0;

2 E[wt ] = 0 and E[wtw⊤
t ] = W , where W is positive definite;

Note the system equation can be expressed as

xt+1 −Θ⊤zt = wt ∼ pw ,

where zt := (xt , ut) ∈ Rd .

Therefore,

p(θ|ht+1) ∝ p(xt+1|zt , θ)p(θ|ht)

= pw (xt+1 −Θ⊤zt |zt , θ)p(θ|ht)

preserves log-concavity.



Preconditioned ULA

By change of variable via

Pt := λIdn +
t−1∑
s=1

blkdiag{zsz⊤s }ni=1,

preconditioned ULA is defined as

θj+1 = θj − γtP
−1
t ∇Ut(θj) +

√
2γP−1

t Wj ,

for

γt :=
mλmin,t

16M2 max{λmin,t , t}
,

Nt :=
4 log2(max{λmin,t , t}/λmin,t)

mγt
,



Preconditioned ULA vs Naive ULA

Lemma

For potential up to time t,

m ⪯ P
− 1

2
t ∇2Ut(θ)P

− 1
2

t ⪯ M,

where m = min{m, 1}, M = max{m, 1}, Pt = λIdn +
∑t−1

s=1 blkdiag({zsz
⊤
s }ni=1)

and the potential of the posterior Ut(θ) = − log p(θ|ht) where U1 satisfies
∇2

θU1(·) = λIdn for some λ > 0.

Stepsize
λmin

λ2
max

vs
mλmin

16M2 max{λmin, t}
Step iteration (

λmax

λmin

)2

vs
4 log2(max{λmin,t , t}/λmin,t)

mγ
,



Preconditioned ULA

By change of variable via

Pt := λIdn +
t−1∑
s=1

blkdiag{zsz⊤s }ni=1,

preconditioned ULA is defined as

θj+1 = θj − γP−1∇U(θj) +
√

2γP−1Wj ,

Theorem

For any t > 0 and trajectory (zs)s≥1, the actual posterior µt and the
approximate posterior µ̃t obtained by preconditioned ULA satisfy

Eθt∼µt ,θ̃t∼µ̃t

[
|θt − θ̃t |pPt

| ht
]
≤ Dp,

where D = 114 dn
m

and Dp =

(
pdn
m

) p
2
(
22p+1 + 5p

)
for p ≥ 2. When p = 2, we

further have

Eθt∼µt ,θ̃t∼µ̃t

[
|θt − θ̃t |2 | ht

] 1
2 ≤

√
D

max{λmin,t , t}
.



Infusing noise for better exploration

Basically, we use
ut = Kθxt

(Persistence of excitation)A key question how to we ensure that

λmin(Ut)

grows as t increases?
Our idea is to introduce noise injection.

Noise injection
ut = Kθxt + νt



Concentration of exact posterior µt

Proposition (Persistence of excitation)

Given λ > 0 and k sufficiently large,

E
[

1

λp
min,k+1

]
≤ Ck−p

for some global constant C > 0 where λmin,k+1 denotes the smallest eigenvalue

of λId +
∑tk+1−1

s=1 zsz
⊤
s where (zs)s≥1 is obtained via our main algorithm. In

fact, λmin,k is same as that of our preconditioner Pk .

Proposition

The true parameter θ∗ and the exact posterior µt obtained by the main
algorithm satisfies

E[Eθt∼µt [|θt − θ∗|pht ]] ≤ C

(
t−

1
4

√
log t

)p

for all t ≥ 1 and p > 0.



Main result

We have the following result.

Theorem (K,Kim,Yang (2024))

The true parameter θ∗ and the approximate posterior µ̃t satisfy

E
[
Eθ̃t∼µ̃t

[
|θ̃t − θ∗|p|ht

]]
≤ C

(
t−

1
4

√
log t

)p

for any p > 0.



Skecth of proof

Assuming everything is nice.

Proof.

By Jensen’s inequality,

E
[
Eθ̃t∼µ̃t

[
|θ̃t − θ∗|p|ht

]]
= E

[
Eθt∼µt ,θ̃t∼µ̃t

[
|θ̃t − θ∗|p

∣∣ht ]]
≤ 2p−1E

[
Eθt∼µt ,θ̃t∼µ̃t

[
|θt − θ̃t |p|ht

]]
+ 2p−1E

[
Eθt∼µt ,θ̃t∼µ̃t

[
|θt − θ∗|p|ht

]]
≤ 2p−1E

[
Dp

(
√

λmin,t)p

]
+ 2p−1C

(
t−

1
4

√
log t

)p

≤ C

(
t−

1
4

√
log t

)p

.

What we need is the concentration between exact posterior and true system
parameter, µt and θ∗.



Bayesian regret

The informal statement is..

Theorem (K, Kim, Yang (2024))

By applying fairly random action, we can construct tractable prior.
Furthermore, the expected regret is given by O(

√
T )



Bayesian regret

More results with different noises.

Figure: 3D (left) 5D (middle) 10D (right)

Figure: Stepiterations
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